Table of Contents

1.A.3.b iv - Road Transport: Mopeds & Motorcycles

Short description

In sub-categories 1.A.3.b iv - Road Transport: Mopeds & Motorcycles emissions from fuel combustion in motorised two-wheelers are reported.

Category Code Method AD EF
1.A.3.b iv T1, T3 NS, M CS, M, D
Key Category SO2 NOx NH3 NMVOC CO BC Pb Hg Cd Diox PAH HCB TSP PM10 PM2.5
1.A.3.b iv -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- - -/- -/- -/-

Methodology

Activity data

Specific consumption data for mopeds and motorcycles is generated within the TREMOD model (Knörr, 2020a) 1).

The following table provides an overview of annual amounts of gasoline fuels consumed by motorized two-wheelers in Germany.

Table 1: Annual fuel consumption of mopeds and motorcycles, in terajoules

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
MOPEDS
Gasoline 4.953 3.102 3.133 3.056 3.021 3.169 3.240 3.517 3.298 3.235 3.067 3.152 3.157 3.176 3.191 3.190 3.136 3.195
Biogasoline 0 0 0 21 44 43 62 100 127 133 136 135 137 138 139 134 141 138
Ʃ Mopeds 4.953 3.102 3.133 3.077 3.065 3.212 3.302 3.617 3.426 3.368 3.203 3.287 3.294 3.313 3.330 3.324 3.278 3.333
MOTORCYCLES
Gasoline 16.747 16.206 20.514 19.740 18.888 18.352 17.563 16.613 15.680 15.294 14.426 14.327 14.738 14.516 14.812 15.195 14.565 14.780
Biogasoline 0 0 0 21 44 43 62 100 127 133 136 135 137 138 139 134 141 138
Ʃ Motorcycles 16.747 16.206 20.514 19.761 18.932 18.395 17.625 16.714 15.807 15.427 14.561 14.463 14.875 14.654 14.950 15.330 14.706 14.917
MOTORIZED 2-WHEELERS: Mopeds & Motorcycles
Gasoline 21.700 19.308 23.648 22.796 21.909 21.521 20.803 20.130 18.978 18.530 17.492 17.480 17.894 17.691 18.003 18.385 17.702 17.974
Biogasoline 0 0 0 157 316 291 398 575 733 760 775 749 778 767 782 775 796 775
Ʃ 1.A.3.b iv 21.700 19.308 23.648 22.953 22.225 21.812 21.201 20.705 19.712 19.289 18.268 18.229 18.673 18.459 18.785 19.160 18.497 18.750

source: TREMOD 6.02 2)

For information on mileage, please refer to sub-chapters on emissions from tyre & brake wear and road abrasion.

Emission factors

The majority of emission factors for exhaust emissions from road transport are taken from the 'Handbook Emission Factors for Road Transport' (HBEFA, version 4.1) 3) where they are provided on a tier3 level mostly and processed within TREMOD 4).

However, it is not possible to present these highly specific tier3 values in a comprehendible way here.

With respect to the country-specific emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly. 1)

For heavy-metal (other then lead from leaded gasoline) and PAH exhaust-emissions, default emission factors from the 2019 EMEP Guidebook (EMEP/EEA, 2019) 5) have been applied. Regarding PCDD/F, tier1 EF from (Rentz et al., 2008) 6) are used instead.

Table 3: Overview of applied EMEP/EEA defaults and other tier1 EF

As Cd Cr Cu Hg Ni Pb Se Zn PCDD/F B[a]P B[b]F B[k]F I[…]P PAH 1-4
[g/TJ] [µg/km] [mg/TJ]
0.007 0.005 0.145 0.103 0.200 0.053 0.037 0.005 0.758 0.0000027 192.91 215.88 156.17 234.25 799.21

NFR 1.A.3.b iv is no key category.

Carbon monoxide

Non-methane volatile organic compounds

Since 1990, exhaust emissions of NMVOC have decreased due to technical improvements.

Nitrogen oxides

Sulphur dioxide

As for the entire road transport sector, the trends for sulphur dioxide exhaust emissions from two-wheelers shows charcteristics very different from those shown above: Here, the strong dependence on increasing fuel qualities (sulphur content) leads to an cascaded downward trend of emissions , influenced only slightly by increases in fuel consumption and mileage.

Particulate matter & Black carbon

Particle emissions result from the comusbtion of gasoline and bioethanol. Here, due to the assumption that nearly all TSP emitted is formed by particles in the PM,,2.5,, range, similar estimates are provided for all three fractions. (Exception: Until 1997, additional TSP emissions from use of leaded gasoline are included.)

Recalculations

Compared to submission 2020, recalculations were carried out due to a routine revision of the TREMOD software and the revision of several National Energy Balances (NEB).

Here, activity data were revised within TREMOD.

Table 4: Revised fuel consumption data, in terajoules

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
GASOLINE
Submission 2021 21.700 19.308 23.648 22.796 21.909 21.521 20.803 20.130 18.978 18.530 17.492 17.480 17.894 17.691 18.003 18.385 17.702
Submission 2020 23.131 19.972 24.124 23.030 21.811 21.678 20.902 20.202 19.039 18.591 17.555 17.548 17.996 17.777 18.080 18.456 17.915
absolute change -1.431 -664 -476 -233 98,6 -157 -99,0 -71,5 -60,7 -61,7 -62,4 -68,3 -102 -86,0 -77,0 -71,3 -214
relative change -6,18% -3,3% -2,0% -1,0% 0,45% -0,7% -0,5% -0,4% -0,32% -0,33% -0,36% -0,39% -0,56% -0,48% -0,43% -0,39% -1,19%
BIOGASOLINE
Submission 2021 0 0 0 157 316 291 398 575 733 760 775 749 778 767 782 775 796
Submission 2020 0 0 0 158 314 293 400 577 736 762 778 752 783 771 785 778 806
absolute change 0 0 0 -1,60 1,42 -2,12 -1,89 -2,04 -2,35 -2,53 -2,77 -2,93 -4,42 -3,73 -3,35 -3,01 -9,62
relative change -1,01% 0,45% -0,72% -0,47% -0,35% -0,32% -0,33% -0,36% -0,39% -0,56% -0,48% -0,43% -0,39% -1,19%
TOTAL FUEL CONSUMPTION
Submission 2021 21.700 19.308 23.648 22.953 22.225 21.812 21.201 20.705 19.712 19.289 18.270 18.233 18.677 18.464 18.791 19.167 18.505
Submission 2020 23.131 19.972 24.124 23.188 22.125 21.971 21.302 20.779 19.775 19.354 18.336 18.304 18.783 18.554 18.871 19.242 18.729
absolute change -1.431 -664 -476 -235 100 -159 -101 -73,6 -63,1 -64,3 -65,2 -71,2 -106 -89,7 -80,4 -74,4 -223
relative change -6,18% -3,33% -1,97% -1,01% 0,45% -0,72% -0,47% -0,35% -0,32% -0,33% -0,36% -0,39% -0,56% -0,48% -0,43% -0,39% -1,19%

Due to the variety of tier3 emission factors applied, it is not possible to display any changes in these data sets in a comprehendible way.

For more information on recalculated emission estimates reported for Base Year and 2018, please see the pollutant-specific recalculation tables following chapter 8.1 - Recalculations.

Planned improvements

Besides a routine revision of the underlying model, no specific improvements are planned.

FAQs


1), 2), 4) Knörr et al. (2020a): Knörr, W., Heidt, C., Gores, S., & Bergk, F.: ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Fortschreibung des Daten- und Rechenmodells: Energieverbrauch und Schadstoffemissionen des motorisierten Verkehrs in Deutschland 1960-2035, sowie TREMOD, im Auftrag des Umweltbundesamtes, Heidelberg & Berlin, 2020.
3) Keller et al. (2017): Keller, M., Hausberger, S., Matzer, C., Wüthrich, P., & Notter, B.: Handbook Emission Factors for Road Transport, version 4.1 (Handbuch Emissionsfaktoren des Straßenverkehrs 4.1) URL: http://www.hbefa.net/e/index.html - Dokumentation, Bern, 2017.
5) EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook 2019; https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view; Copenhagen, 2019.
6) Rentz et al., 2008: Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des Umweltbundesamtes, FKZ 205 67 444, UBA Texte | 01/2008, January 2008 - URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer
1)
During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions.