meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:agriculture:agricultural_other:start [2021/01/25 17:36] – [Recalculations] doeringsector:agriculture:agricultural_other:start [2022/09/19 07:47] (current) – Fix link hausmann
Line 1: Line 1:
 ====== 3.I - Agricultural: Other  ====== ====== 3.I - Agricultural: Other  ======
 +===== Short description =====
  
-^ NFR-Code                                         ^ Name of Category                        ^ Method         ^ AD     ^ EF             ^ Key Category 1   ^ State of reporting  ^ 
-| 3.I                                              | Agriculture other                                      |        |                |                  |                     | 
-| **consisting of / including source categories**                                           ||                |        |                |                  |                     | 
-| 3.I                                              | Storage of digestate from energy crops  | T2 (NH3, NOx)  | Q, PS  | CS (NH3, NOx)  | no key category  |                     | 
  
-====== Country specifics ======## must be updated+^ NFR-Code                                         ^ Name of Category                        ^ Method                               ^ AD     ^ EF                                   ^ State of reporting 
 +| 3.I                                              | Agriculture other                                                            |        |                                      |                     | 
 +| **consisting of / including source categories**                                                                                                                                                    |||||| 
 +| 3.I                                              | Storage of digestate from energy crops  | T2 (NH<sub>3</sub>, NO<sub>x</sub> | Q, PS  | CS (NH<sub>3</sub>, NO<sub>x</sub> |                     |
  
-In 2019, NH<sub>3</sub>  emissions from category 3.I (agriculture other) derived up to YY0.% from total agricultural emissions, which is equal to ~YY 3.kt NH<sub>3</sub> . NO<sub>x</sub>  emissions from category 3.I contribute YY0.15 % (~ YY0.18 kt) to the total agricultural emissions. All these emissions originate from the storage of digestate from energy crops (for details on anaerobic digestion of energy crops see Rösemann et al. 2021, Chapter 10 ((Rösemann et al. (2021): Rösemann C, Haenel H-D, Dämmgen U, Döring U, Wulf S, Eurich-Menden B, Freibauer A, Döhler H, Schreiner C, Osterburg B & Fuß, R (2021): Calculations of gaseous and particulate emissions from German Agriculture 1990 –2019. Report on methods and data (RMD), Submission 2021. Thünen Report XX. https://www.thuenen.de/de/ak/arbeitsbereiche/emissionsinventare/)). +^  Key Category  ^  SO₂      NOₓ  ^  NH₃  ^  NMVOC  ^  CO    BC    Pb    Hg    Cd    Diox  ^  PAH  ^  HCB  ^  TSP  ^  PM₁₀  ^  PM₂ ₅  ^ 
-Note that these emissions of NH<sub>3</sub>  and NO<sub>x</sub>  from storage of anaerobically digested energy crops are excluded from emission accounting by adjustment as they are not considered in the NEC and Gothenburg commitments (see adjustments).+| 3.I              -          |  -/-  |  -/-  |  -      |  -    |  -    |  -    |  -    |  -    |  -      -    |  -    |  -    |  -      -      | 
 + {{page>general:Misc:LegendEIT:start}} 
 +\\ 
 + 
 +==== Country specifics ==== 
 +  
 + 
 + 
 +In 2019, NH<sub>3</sub>  emissions from category 3.I (agriculture other) derived up to 0.% from total agricultural emissions, which is equal to ~ 3.kt NH<sub>3</sub> . NO<sub>x</sub>  emissions from category 3.I contribute 0.15 % (~ 0.17 kt) to the total agricultural emissions. All these emissions originate from the storage of digestate from energy crops (for details on anaerobic digestion of energy crops see Rösemann et al. 2021, Chapter 10 ((Rösemann et al. (2021): Rösemann C., Haenel H-D., Vos C., Dämmgen U., Döring U., Wulf S., Eurich-Menden B., Freibauer A., Döhler H., Schreiner C., Osterburg B& Fuß, R(2021): Calculations of gaseous and particulate emissions from German Agriculture 1990 –2019. Report on methods and data (RMD), Submission 2021. Thünen Report (in preparation). https://www.thuenen.de/de/fachinstitute/agrarklimaschutz/arbeitsbereiche/emissionsinventare)). 
 +Note that these emissions of NH<sub>3</sub>  and NO<sub>x</sub>  from storage of anaerobically digested energy crops are excluded from emission accounting by adjustment as they are not considered in the NEC and Gothenburg commitments (see [[general:adjustments:adjustment_de-d|Adjustment DE - D - Nitrogen oxides (3.D.a.2.c Other organic fertilisers applied to soils (including compost)') &amp; Ammonia from Energy Crops]]).
 The emissions resulting from the application of energy crop digestates as organic fertilizer are dealt with under 3.D.a.2.c. The emissions resulting from the application of energy crop digestates as organic fertilizer are dealt with under 3.D.a.2.c.
-Activity Data+ 
 +==== Activity Data ==== 
 Time series of activity data have been provided by KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft / Association for Technology and Structures in Agriculture). From these data the amount of N in energy crops fed into anaerobic digestion was calculated. Time series of activity data have been provided by KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft / Association for Technology and Structures in Agriculture). From these data the amount of N in energy crops fed into anaerobic digestion was calculated.
  
  
 //Table 1: N amount in energy crops fed into anaerobic digestion// //Table 1: N amount in energy crops fed into anaerobic digestion//
 +^  N amount in energy crops in Gg N                                                                                                          ||||||||||||||
 +^  1990                              ^  1995  ^  2000  ^  2005  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^
 +| 0.1                                | 0.7    | 5.6    | 47.6   | 172.0  | 214.5  | 234.9  | 284.1  | 297.3  | 308.8  | 307.1  | 302.1  | 297.6  | 297.6  |
 +
 +
 +//Table 2: Distribution of gastight storage and storage in open tank of energy crop digestates//
 +
 +^  Distribution of gastight storage and non-gastight storage, in %                                                                                                                  |||||||||||||^^
 +^                                                                    1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^
 +| gastight                                                          | 0.0    | 4.7    | 9.4    | 15.8   | 42.2   | 47.5   | 59.4   | 61.9   | 63.9   | 64.6   | 64.8   | 64.5   | 64.8   | 64.8   |
 +| non-gastight                                                      | 100.0  | 95.3   | 90.6   | 84.2   | 57.8   | 52.5   | 40.6   | 38.1   | 36.1   | 35.4   | 35.2   | 35.5   | 35.2   | 35.2   |
    
-====== Methodology ======+==== Methodology ==== 
 + 
 +The calculation of emissions from storage of digestate from energy crops considers two different types of storage, i. e. gastight storage and open tank. The frequencies of these storage types are also provided by KTBL (see Table 2). There are no emissions of NH<sub>3</sub>  and NO from gastight storage of digestate. Hence the total emissions from the storage of digestate are calculated by multiplying the amount of N in the digestate leaving the fermenter with the relative frequency of open tanks and the emission factor for open tank. The amount of N in the digestate leaving the fermenter is identical to the N amount in energy crops fed into anaerobic digestion (see Table 1) because N losses from pre-storage are negligible and there are no N losses from fermenter (see Rösemann et al. 2021, Chapter 10.2.1.) 
 + 
 +==== Emission factors ==== 
 + 
 + 
 +As no specific emission factor is known for the storage of digestion residues in open tanks, the NH<sub>3</sub>  emission factor for storage of cattle slurry with crust in open tanks was adopted (0.045 kg NH<sub>3</sub> -N per kg TAN). This choice of emission factor is based on the fact that energy crops are, in general, co-fermented with animal manures (i. e. mostly slurry) and that a natural crust forms on the liquid digestates due to the relatively high dry matter content of the energy crops. The TAN content after the digestion process is 0.56 kg TAN per kg N. The NO emission factor for storage of digestion residues in open tanks was set to 0.0005 kg NO-N per kg N. Table 3 shows the resulting implied emission factors for NH<sub>3</sub> -N and NO-N. NO<sub>x</sub>  emissions are related to NO-N emissions by the ratio of 46/14. This relationship also holds for NO-N and NO<sub>x</sub>  emission factors. 
 + 
 + 
 +//Table 3: IEF for NH<sub>3</sub> -N and NO-N emissions from storage of digested energy crops// 
 + 
 +^  1990                                                              1995    ^  2000    ^  2005    ^  2010    ^  2011    ^  2012    ^  2013    ^  2014    ^  2015    ^  2016    ^  2017    ^  2018    ^  2019    ^ 
 +| **IEF in kg NH<sub>3</sub>-N per kg N in digested energy crops**                                                                                                                                    |||||||||||||| 
 +| 0.0252                                                            | 0.0240   | 0.0228   | 0.0212   | 0.0146   | 0.0132   | 0.0102   | 0.0096   | 0.0091   | 0.0089   | 0.0089   | 0.0089   | 0.0089   | 0.0089   | 
 +| **IEF in kg NO-N per kg N in digested energy crops **                                                                                                                                               |||||||||||||| 
 +| 0.00050                                                           | 0.00048  | 0.00045  | 0.00042  | 0.00029  | 0.00026  | 0.00020  | 0.00019  | 0.00018  | 0.00018  | 0.00018  | 0.00018  | 0.00018  | 0.00018 
 + 
 + 
  
-The calculation of emissions from storage of digestate from energy crops considers two different types of storage, i. e. gastight storage and open tank. The frequencies of these storage types are also provided by KTBL. There are no emissions of NH<sub>3</sub>  and NO from gastight storage of digestate. Hence the total emissions from the storage of digestate are calculated by multiplying the amount of N in the digestate leaving the fermenter with the relative frequency of open tanks and the emission factor for open tank. The amount of N in the digestate leaving the fermenter is identical to the N amount in energy crops fed into anaerobic digestion (see Table 1) because N losses from pre-storage are negligible and there are no N losses from fermenter (see Rösemann et al. 2021, Chapter 10.2.1. 
-Emission factors 
-As no specific emission factor is known for the storage of digestion residues in open tanks, the NH<sub>3</sub>  emission factor for storage of cattle slurry with crust in open tanks was adopted (0.045 kg NH<sub>3</sub> -N per kg TAN). This choice of emission factor is based on the fact that energy crops are, in general, co-fermented with animal manures (i. e. mostly slurry) and that a natural crust forms on the liquid digestates due to the relatively high dry matter content of the energy crops. The TAN content after the digestion process is 0.56 kg TAN per kg N. The NO emission factor for storage of digestion residues in open tanks was set to 0.0005 kg NO-N per kg N. Table 2 shows the resulting implied emission factors for NH<sub>3</sub> -N and NO-N. NO<sub>x</sub>  emissions are related to NO-N emissions by the ratio of 46/14. This relationship also holds for NO-N and NO<sub>x</sub>  emission factors. 
  
-//Table 2: IEF for NH<sub>3</sub> -N and NO-N emissions from storage of digested energy crops// 
    
-====== Trend discussion for Key Sources ======+==== Trend discussion for Key Sources ====
  
 NH<sub>3</sub>  and NO<sub>x</sub>  from storage of anaerobically digested energy crops are no key source. NH<sub>3</sub>  and NO<sub>x</sub>  from storage of anaerobically digested energy crops are no key source.
  
-====== Recalculations ======+==== Recalculations ==== 
 + 
 +All time series of the emission inventory have completely been recalculated since 1990. Table REC-1 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions from storage of anaerobically digested energy crops. Differences to last year’s submission occur only in 2018 and are due to the update of activity data (see main page of the agricultural sector, [[sector:agriculture:start|Chapter 5 - NFR 3 - Agriculture (OVERVIEW)]], **recalculation reason No 15**). For further details on recalculations see Rösemann et al. (2021), Chapter 3.5.2. 
 + 
  
-Table 3 shows the effects of recalculations on NH<sub>3</sub>  and NO<sub>x</sub>  emissions. Differences to the last year’s submission are due to the update of activity data (**recalculation No 12**, see main page of the agricultural sector ([[sector:agriculture:start|https://iir-de-2020.wikidot.com/3-agriculture]]). Further details about recalculations are described in Rösemann et al. (2021), Chapter 3.5.2.+//Table REC-1: Comparison of NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021//
  
-//Table 3: Comparison of NH<sub>3</sub>  and NO<sub>x</sub>  emissions from 3.I, as reported in the 2020 and 2021 submissions/+^ NH<sub>3</sub> NO<sub>x</sub> emissions in Gg                                                                                                                                       ||||||||||||^||| 
-====== Uncertainty ======+^                                                  ^  SUB  ^  1990    1995    2000    2005    2010    2011    2012    2013    2014    2015    2016    2017    2018    2019   ^ 
 +| NH<sub>3</sub>                                   | 2021  | 0.0015  | 0.0190  | 0.1563  | 1.2267  | 3.0426  | 3.4504  | 2.9206  | 3.3062  | 3.2814  | 3.3428  | 3.3004  | 3.2741  | 3.2013  | 3.2013 
 +NH<sub>3</sub>                                   | 2020  | 0.0015  | 0.0190  | 0.1563  | 1.2267  | 3.0426  | 3.4504  | 2.9206  | 3.3062  | 3.2814  | 3.3428  | 3.3004  | 3.2741  | 3.2895  |         | 
 +NO<sub>x</sub>                                   | 2021  | 0.0001  | 0.0010  | 0.0084  | 0.0659  | 0.1634  | 0.1852  | 0.1568  | 0.1775  | 0.1762  | 0.1795  | 0.1772  | 0.1758  | 0.1719  | 0.1719 
 +| NO<sub>x</sub>                                   | 2020  | 0.0001  | 0.0010  | 0.0084  | 0.0659  | 0.1634  | 0.1852  | 0.1568  | 0.1775  | 0.1762  | 0.1795  | 0.1772  | 0.1758  | 0.1766  |         | 
 +==== Uncertainty ====
  
-Details will be described in chapter 1.7.+Details will be described in [[general:uncertainty_evaluation:start|chapter 1.7]].