3.D - Agricultural Soils 1/13

# 3.D - Agricultural Soils

## **Short description**

| NFR-Code   | Name of Category                                                                                      | Method                                                  | AD     | EF                                                | Key Category <sup>1</sup>                      | State of reporting              |
|------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------|---------------------------------------------------|------------------------------------------------|---------------------------------|
| 3.D        | Agricultural Soils                                                                                    |                                                         |        |                                                   |                                                |                                 |
| consisting | of / including source cated                                                                           | gories                                                  |        |                                                   |                                                |                                 |
| 3.D.a.1    | Inorganic N-fertilizers<br>(includes also urea<br>application)                                        | T2 (NH <sub>3</sub> ), T1 (for NO <sub>x</sub> )        | NS,RS  | D (NH <sub>3</sub> ),<br>D (NO <sub>x</sub> )     | L & T: (NO <sub>x</sub> ,<br>NH <sub>3</sub> ) |                                 |
| 3.D.a.2.a  | Animal manure applied to soils                                                                        | T2, T3 (NH <sub>3</sub> ),<br>T1 (for NO <sub>x</sub> ) | M      | CS<br>(NH <sub>3</sub> ), D<br>(NO <sub>x</sub> ) | L & T: (NO <sub>x</sub> ,<br>NH <sub>3</sub> ) |                                 |
| 3.D.a.2.b  | Sewage sludge applied to soils                                                                        | T1 (for NH <sub>3</sub> ,NO <sub>x</sub> )              | NS, RS | D (NH <sub>3</sub> ),<br>D (NO <sub>x</sub> )     | no key<br>category                             |                                 |
| 3.D.a.2.c  | Other organic fertilisers applied to soils (including compost)                                        | T2 (for NO <sub>x</sub> , NH <sub>3</sub> )             | М      | CS                                                | L & T: (NH <sub>3</sub> )                      |                                 |
| 3.D.a.3    | Urine and dung deposited by grazing animals                                                           | T1 (for NH <sub>3</sub> , NO <sub>x</sub> )             | NS,RS  | D                                                 | no key<br>category                             |                                 |
| 3.D.c      | Farm-level agricultural operations including storage, handling and transport of agricultural products | T1 (for TSP,<br>PM <sub>10</sub> , PM <sub>2.5</sub> )  | NS, RS | D                                                 | L & T: (TSP,<br>PM <sub>10</sub> )             |                                 |
| 3.D.d      | Off-farm storage, handling and transport of bulk agricultural products                                |                                                         |        |                                                   |                                                | NA & for<br>Black<br>Carbon, NR |
| 3.D.e      | Cultivated crops                                                                                      | T2 (NMVOC)                                              | NS, RS | D                                                 | no key<br>category                             |                                 |
| 3.D.f      | Agriculture other including use of pesticides                                                         | T2 (HCB)                                                | NS     | D                                                 | L & T: HCB                                     |                                 |

Legend T = key source by Trend / L = key source by Level

Methods D: Default RA: Reference Approach T1: Tier 1 / Simple Methodology \* T2: Tier 2\* T3: Tier 3 / Detailed Methodology \* C: CORINAIR CS: Country Specific M: Model as described in the EMEP/CORINAIR Emission Inventory Guidebook - 2019, in the group specific chapters.

AD:- Data Source for Activity Data NS: National Statistics RS: Regional Statistics IS: International Statistics PS: Plant Specific data AS: Associations, business organisations Q: specific questionnaires, surveys

3.D - Agricultural Soils 2/13

EF - Emission Factors D: Default (EMEP Guidebook) C: Confidential CS: Country Specific PS: Plant Specific data

## **Country specifics**



#### NH<sub>3</sub> and NO<sub>x</sub>

In 2019, the category of agricultural soils emitted 311.3 kt  $NH_3$  or 55.8 % of the total agricultural  $NH_3$  emissions in Germany (557.8 kt  $NH_3$ ). The main contributions to the total  $NH_3$  emissions from agricultural soils are the application of manure (3.D.a.2.a), with 174.1 kt (55.9 %) and the application of inorganic N-fertilizers (3.D.a.1) with 68.1 kt (12,2 %).

Application of sewage sludge (3.D.a.2.b) contributes 0.6 % or 1.7 kt NH<sub>3</sub>.

The application of residues from the digestion of energy crops (3.D.a.2.c) leads to 54.6 kt  $NH_3$  or 17.5 %. N excretions on pastures (3.D.a.3) have a share of 12.8 kt  $NH_3$  or 4.1 %.

 $NH_3$  emissions from application of residues from the digestion of energy crops are excluded from emission accounting by adjustment as they are not considered in the NEC and Gothenburg commitments (see Chapter 11 - Adjustments and Emissions Reduction Commitments).

In 2019, agricultural soils were the source of 98.6 % (110.7 kt) of the total of  $NO_x$  emissions in the agricultural category (112.2 kt). The  $NO_x$  emissions from agricultural soils are mostly due to application of inorganic fertilizer (3.D.a.1) (50.6 %) and manure (3.D.a.2.a) (33.9 %). Application of residues from digested energy crops (3.D.a.2.c) contributes 10.4 % to agricultural soil emissions, 4.6 % are due to excretions on pastures (3.D.a.3). Emissions from application of sewage sludge (3.D.a.2.b) contribute 0.5 %.

All  $NO_x$  emissions from the agricultural category are excluded from emission accounting by adjustment as they are not considered in the NEC commitments (see Chapter 11 - Adjustments and Emissions Reduction Commitments).

3.D - Agricultural Soils 3/13

#### **NMVOC**

In 2019, the category of agricultural soils contributed 8.6 kt NMVOC or 2.8 % to the total agricultural NMVOC emissions in Germany. The only emission source was cultivated crops (3.D.e). All NMVOC emissions from the agricultural category are excluded from emission accounting by adjustment as they are not considered in the NEC commitments.

#### TSP, PM<sub>10</sub> & PM<sub>2.5</sub>

In 2019, agricultural soils contributed, respectively, 28.9 % (17.4 kt), 57.3 % (17.4 kt) and 15.2 % (0.7 kt) to the total agricultural TSP,  $PM_{10}$  and  $PM_{2.5}$  emissions (60.3 kt, 30.4 kt, 4.4 kt, respectively). The emissions are reported in category 3.D.c (Farm-level agricultural operations including storage, handling and transport of agricultural products).

### 3.D.a.1 - Inorganic N-fertilizers

The calculation of  $NH_3$  and NOx (NO) emissions from the application of inorganic fertilizers is described in Rösemann et al. (2021), Chapter 11.1 <sup>1)</sup>. **Activity Data** 

German statistics report the amounts of fertilizers sold which are assumed to equal the amounts that are applied. Since the 2021 submission, storage effects are approximated by applying a moving average to the sales data (moving centered three-year average, for the last year a two-year average).

Table 1: AD for the estimation of NH<sub>3</sub> and NOx emissions from application of inorganic fertilizers

| Application of inorganic fertilizers in Gg N |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|----------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                                              | 1990  | 1995  | 2000  | 2005  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  |
| Application of fertilizers (total)           |       | 1,723 | 1,922 | 1,797 | 1,635 | 1,665 | 1,692 | 1,655 | 1,716 | 1,736 | 1,731 | 1,622 | 1,499 | 1,419 |
| Calcium<br>ammonium<br>nitrate               | 1,368 | 1,044 | 982   | 824   | 689   | 708   | 680   | 644   | 633   | 618   | 605   | 571   | 543   | 525   |
| Nitrogen<br>solutions<br>(urea AN)           | 127   | 223   | 261   | 236   | 180   | 187   | 181   | 173   | 173   | 172   | 171   | 162   | 151   | 140   |
| Urea                                         | 243   | 180   | 247   | 290   | 362   | 323   | 348   | 342   | 391   | 417   | 433   | 377   | 310   | 263   |
| Ammonium phosphates                          | 85    | 55    | 66    | 55    | 64    | 71    | 77    | 78    | 82    | 84    | 82    | 77    | 65    | 62    |
| Other NK and<br>NPK                          | 246   | 162   | 175   | 126   | 63    | 66    | 73    | 71    | 72    | 67    | 62    | 54    | 52    | 50    |
| Other<br>straight<br>fertilizers             | 127   | 60    | 191   | 266   | 277   | 311   | 331   | 348   | 365   | 377   | 377   | 381   | 378   | 379   |

#### Methodology

 $NH_3$  emissions from the application of inorganic fertilizers are calculated using the Tier 2 approach according to EMEP (2019)-3D-14ff <sup>2)</sup>, distinguishing between various fertilizer types, see Table 2. For  $NO_x$ , the Tier 1 approach described in EMEP (2019) [10]-3D-11 is applied.

3.D - Agricultural Soils 4/13

#### **Emission factors**

The emission factors for NH<sub>3</sub> depend on fertilizer type, see EMEP (2019)-3D-15. Table 2 lists the EMEP emission factors for the fertilizers used in the inventory. In order to reflect average German conditions the emission factors for cool climate and a pH value lower than 7 was chosen.

Table 2: NH<sub>3</sub>-EF for inorganic fertilizers

| Inorganic fertilizers, emission facto | rs in kg NH₃ per kg fertilizer N |
|---------------------------------------|----------------------------------|
| Fertilizer type                       | EF                               |
| Calcium ammonium nitrate              | 0.008                            |
| Nitrogen solutions (UREA AN)          | 0.098                            |
| Urea                                  | 0.155                            |
| Ammonium phosphates                   | 0.050                            |
| Other NK and NPK                      | 0.050                            |
| Other straight fertilizers            | 0.010                            |

For  $NO_x$ , the simpler methodology by EMEP (2019)-3D-11 was used. The emission factor 0.040 from EMEP, 2019-3D, Table 3.1 has the units of kg  $N_2O$  per kg fertilizer N and was derived from Stehfest and Bouwman (2006) <sup>3)</sup>. The German inventory uses the emission factor 0.012 kg NO-N per kg N derived from Stehfest and Bouwman (2006). This is equivalent to an emission factor of 0.03943 kg  $NO_x$  per kg fertilizer N (obtained by multiplying 0.012 kg NO-N per kg N with the molar weight ratio 46/14 for  $NO_3$ : NO). The inventory uses the unrounded emission factor.

Table 3: Emission factor for NO<sub>x</sub> emissions from fertilizer application

| <b>Emission factor</b>    | kg NO-N | per kg fertilizer N | kg NO <sub>x</sub> per kg fertilizer N |
|---------------------------|---------|---------------------|----------------------------------------|
| <b>EF</b> <sub>fert</sub> |         | 0.012               | 0.039                                  |

#### **Trend discussion for Key Sources**

In the last five years (and in the last three years in dramatic fashion) fertilizer sales have decreased. Emissions have fallen accordingly. This is even more the case with  $NH_3$  than with  $NO_x$ , as total  $NH_3$  from the application of mineral fertilizers is very strongly correlated with the amount of urea applied ( $R^2 = 0.89$ ), the sales of which have decreased more than for all other mineral fertilizers.

#### Recalculations

Table REC-1 shows the effects of recalculations on  $NH_3$  and  $NO_x$  emissions. The procedure of temporal averaging of activity data has been applied for the first time (**recalculation reason 13**, see main page of the agricultural sector). It results in smoothing of extreme values and redistribution of emissions between neighbouring years. Hence, the emissions from fertilizer application changed markedly in every year compared to last year's submission.

Table REC-1: Comparison of  $NH_3$  and  $NO_x$  emissions from fertilizer application of the submissions (SUB) 2020 and 2021

|                 | NH <sub>3</sub> and NO <sub>x</sub> emissions from fertilizer application, in Gg |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|-----------------|----------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                 | SUB 1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| NH <sub>3</sub> | 2021                                                                             | 78.82 | 69.56 | 85.64 | 86.36 | 88.43 | 83.96 | 88.04 | 85.95 | 93.92 | 97.89 | 99.73 | 89.25 | 76.79 | 68.09 |

3.D - Agricultural Soils 5/13

| NH <sub>3</sub> | 2020 | 78.45 | 71.99 | 85.47 | 82.61 | 75.89 | 94.92 | 81.06 | 88.14 | 88.65 | 104.96 | 100.05 | 94.18 | 73.52 |       |
|-----------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|-------|-------|-------|
| NO <sub>x</sub> | 2021 | 86.57 | 67.94 | 75.77 | 70.84 | 64.48 | 65.66 | 66.71 | 65.25 | 67.65 | 68.46  | 68.24  | 63.95 | 59.11 | 55.97 |
| NO <sub>x</sub> | 2020 | 85.31 | 70.48 | 79.42 | 70.12 | 61.87 | 70.44 | 64.68 | 65.01 | 66.05 | 71.87  | 67.45  | 65.41 | 59.01 |       |

#### **Planned improvements**

No improvements are planned at present.

## 3.D.a.2.a - Animal manure applied to soils

In this sub category Germany reports the  $NH_3$  and  $NO_x$  (NO) emissions from application of manure (including application of anaerobically digested manure). For an overview see Rösemann et al. (2021), Chapter 11.2.

#### **Activity data**

The calculation of the amount of N in manure applied is based on the N mass flow approach (see 3.B). It is the total of N excreted by animals in the housing and the N imported with bedding material minus N losses by emissions of N species from housing and storage. Hence, the amount of total N includes the N contained in anaerobically digested manures to be applied to the field.

The frequencies of application techniques and incorporation times as well as the underlying data sources are described in Rösemann et al. (2021), Chapter 3.4.3. The frequencies are provided e. g. in the NIR 2021<sup>4</sup>, Chapter 19.3.2.

Table 4: AD for the estimation of NH<sub>3</sub> and NO<sub>x</sub> emissions from application of manure

|       | Application of manure in Gg N                                         |     |     |     |     |     |     |     |     |     |     |     |     |  |
|-------|-----------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
| 1990  | 1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 |     |     |     |     |     |     |     |     |     |     |     |     |  |
| 1,102 | 964                                                                   | 949 | 922 | 931 | 938 | 955 | 968 | 982 | 978 | 974 | 971 | 959 | 952 |  |

#### Methodology

 $NH_3$  emissions from manure application are calculated separately for each animal species in the mass flow approach by multiplying the respective TAN amount with  $NH_3$  emission factors for the various manure application techniques. For details see [3-b-manure-management 3.B] and Haenel et al. (2020), Chapter 4 to 8 and 11.3, [1]. For  $NO_x$  emissions from manure application the inventory calculates NO-N emissions (see Haenel et al. (2020), Chapter 11.2, [1] that are subsequently converted into  $NO_x$  emissions by multiplying with the molar weight ratio 46/14. The Tier 1 approach for the application of inorganic fertilizer as described in EMEP (2016)-3D-11ff [10] is used, as no specific methodology is available for manure application.

#### **Emission factors**

Table 5 shows the time series of the overall German NH<sub>3</sub> IEF defined as the ratio of total NH<sub>3</sub>-N emission from manure application to the total amount of N spread with manure.

Table 5: IEF for NH₃-N from application of manure

3.D - Agricultural Soils 6/13

| 1990  | 1995  | 2000  | 2005  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.204 | 0.189 | 0.181 | 0.170 | 0.164 | 0.164 | 0.159 | 0.157 | 0.154 | 0.152 | 0.151 | 0.151 | 0.151 | 0.151 |

For  $NO_x$  the same emission factor as for the application of inorganic fertilizer was used (see Table 3). Trend discussion for Key Sources

Both  $NH_3$  and  $NO_x$  emissions from the application of animal manures are key sources. Total  $NO_x$  is calculated proportionally to the total N in the manures applied which remarkably decreased from 1990 to 1991 due to the decline in animal numbers following the German reunification (reduction of livestock numbers in Eastern Germany). Since then the amount of N in manure applied shows no significant trend (1005 +/- 30 Gg N), see Table 4 and therefore there is no trend in the  $NO_x$  emissions. For total  $NH_3$  emissions even after 1991 there is a slight negative trend. This is due to the increasing use of application practices with lower  $NH_3$  emission factors. For both gases, emissions are slightly decreasing since 2015. This is due to the fact that cattle and swine animal numbers are declining.

#### Recalculations

Table REC-2 shows the effects of recalculations on  $NH_3$  and  $NO_x$  emissions. The overall recalculation effects are relatively small. The biggest impact has the update of the N excretions of suckler cows (recalculation No 4, see main agricultural page) and pullets (No 10). Smaller effects, and only on  $NH_3$  emissions, derive from the modified consideration of the trailing shoe application in the inventory model GAS-EM (No 14). Other recalculations only have a minor impact and recalculations 1, 12, 13, 15 and 16 do not result in any effect on emissions from manure application. Further details on recalculations are described in Haenel et al. (2020), Chapter 3.5.2.

Table REC-2: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021

|                 | $\mathrm{NH_3}$ and $\mathrm{NO_x}$ emissions from application of manure, in Gg |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|-----------------|---------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                 | SUB                                                                             | 1990   | 1995   | 2000   | 2005   | 2010   | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   |
| NH <sub>3</sub> | 2021                                                                            | 273.67 | 220.82 | 208.69 | 190.07 | 185.28 | 186.32 | 184.07 | 184.62 | 183.26 | 180.08 | 179.11 | 178.15 | 175.65 | 174.11 |
| NH <sub>3</sub> | 2020                                                                            | 302.62 | 245.55 | 233.18 | 212.57 | 205.50 | 206.48 | 203.83 | 204.40 | 203.60 | 200.59 | 199.92 | 198.74 | 196.64 |        |
| NO <sub>x</sub> | 2021                                                                            | 43.46  | 37.99  | 37.41  | 36.35  | 36.71  | 36.99  | 37.67  | 38.18  | 38.70  | 38.58  | 38.39  | 38.27  | 37.80  | 37.54  |
| NO <sub>x</sub> | 2020                                                                            | 46.65  | 40.67  | 39.90  | 38.57  | 38.78  | 39.06  | 39.74  | 40.31  | 40.88  | 40.79  | 40.61  | 40.45  | 39.94  |        |

#### **Planned improvements**

No improvements are planned at present.

## 3.D.a.2.b - Sewage sludge applied to soils

The calculation of  $NH_3$  and  $NO_x$  (NO) emissions from application of sewage sludge is described in Haenel et al. (2020), Chapter 11.4, [1].

#### **Activity data**

N quantities from application of sewage sludge were calculated from data of the German Environment Agency and (since 2009) from data of the Federal Statistical Office (see Table 6). Hence, there was no need to use the "per capita" activity data as proposed by EMEP (2016)-3.D, Table 3-1 [10].

Table 6: AD for the estimation of NH<sub>3</sub> and NO<sub>x</sub> emissions from application of sewage sludge

3.D - Agricultural Soils 7/13

| Appli | cation | of se | ewage | slud | ge in | Gg N |      |      |      |      |      |      |      |
|-------|--------|-------|-------|------|-------|------|------|------|------|------|------|------|------|
| 1990  | 1995   | 2000  | 2005  | 2010 | 2011  | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
| 27    | 35     | 33    | 27    | 26   | 25    | 25   | 22   | 21   | 19   | 19   | 14   | 13   | 13   |

#### Methodology

A tier 1 methodology is used (EMEP, 2016, 3D, Chapter 3.3.1 [10]).  $NH_3$  and  $NO_x$  emissions are calculated by multiplying the amounts of N in sewage sludge applied with the respective emission factors.

#### **Emission factors**

EMEP (2016)-3.D, Table 3-1 [10] provides Tier 1 emissions factors for  $NH_3$  and NOx emissions from application of sewage sludge. However, it must be noted that the units of the  $NH_3$  emission factor provided in EMEP (2016)-3.D, Table 3-1 [10] are incorrect. It must read 0.13 kg  $NH_3$  per kg N applied instead of 13 kg  $NH_3$  per capita, see EMEP (2016)-3.D, Appendix A1.2.2.1. The German inventory uses the equivalent emission factor in  $NH_3$ -N units which is 0.11 kg  $NH_3$ -N per kg N applied (cf. the derivation of the emission factor described in the appendix of EMEP (2016)-3D, page 25-26, [10]). For  $NO_x$  the same emission factor like for the application of inorganic fertilizer was used (see Table 3). Trend discussion for Key Sources

NH<sub>3</sub> and NO<sub>x</sub> emissions from the application of sewage sludge are no key sources.

#### Recalculations

Table REC-3 shows the effects of recalculations on  $NH_3$  and  $NO_x$  emissions. The only change compared to last year's submission occurs for the year 2017, due to the update of the activity data (recalculation No 13, see main agricultural page. Further details on recalculations are described in Haenel et al. (2020), Chapter 3.5.2.

Table REC-3: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021

| NH <sub>3</sub> | $\mathrm{NH_3}$ and $\mathrm{NO_x}$ emissions from application of sewage sludge, in Gg |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-----------------|----------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|                 | SUB                                                                                    | 1990 | 1995 | 2000 | 2005 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
| NH <sub>3</sub> | 2021                                                                                   | 3.66 | 4.71 | 4.40 | 3.66 | 3.48 | 3.35 | 3.33 | 2.87 | 2.85 | 2.50 | 2.50 | 1.89 | 1.73 | 1.73 |
| NH <sub>3</sub> | 2020                                                                                   | 3.66 | 4.71 | 4.40 | 3.66 | 3.48 | 3.35 | 3.33 | 2.87 | 2.85 | 2.50 | 2.50 | 1.89 | 1.89 |      |
| NO <sub>x</sub> | 2021                                                                                   | 1.08 | 1.39 | 1.30 | 1.08 | 1.03 | 0.99 | 0.98 | 0.85 | 0.84 | 0.74 | 0.74 | 0.56 | 0.51 | 0.51 |
| NO <sub>x</sub> | 2020                                                                                   | 1.08 | 1.39 | 1.30 | 1.08 | 1.03 | 0.99 | 0.98 | 0.85 | 0.84 | 0.74 | 0.74 | 0.56 | 0.56 |      |

#### **Planned improvements**

No improvements are planned at present.

## 3.D.a.2.c - Other organic fertilizers applied to soils

This sub category describes Germany's  $NH_3$  and  $NO_x$  (NO) emissions from application of residues from digested energy crops. For details see Haenel et al. (2020), Chapters 10.2 and 11.3 [1].

#### **Activity data**

3.D - Agricultural Soils 8/13

Activity data is the amount of N in residues from anaerobic digestion of energy crops when leaving storage. This amount of N is the N contained in the energy crops when being fed into the digestion process minus the N losses by emissions of N species from the storage of the residues (see 3.1). N losses from pre-storage are negligible and there are no N losses from fermenter (see Haenel et al. (2020), Chapter 10.2.1).

Table 7: AD for the estimation of  $NH_3$  and  $NO_x$  emissions from application of residues from anaerobic digestion of energy crops

| Appli | Application of residues from digested energy plants in Gg N           |      |       |        |        |        |        |        |        |        |        |        |        |  |
|-------|-----------------------------------------------------------------------|------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| 1990  | 1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 |      |       |        |        |        |        |        |        |        |        |        |        |  |
| 0.05  | 0.62                                                                  | 5.40 | 45.76 | 167.41 | 209.32 | 230.52 | 279.13 | 292.42 | 303.81 | 302.16 | 297.19 | 292.86 | 292.86 |  |

#### Methodology

The  $NH_3$  emissions are calculated the same way as the  $NH_3$  emissions from application of animal manure (3.D.a.2.a). The frequencies of application techniques and incorporation times as well as the underlying data sources are provided e. g. in the NIR 2020 [11], Chapter 19.3.2. The amounts of TAN in the residues applied are obtained from the calculations of emissions from the storage of the digested energy crops (3.I).

For  $NO_x$  emissions from application of residues the Tier 1 approach for the application of inorganic fertilizer as described in EMEP (2016)-3D-11 [10] is used. The inventory calculates NO emissions that are subsequently converted into  $NO_x$  emissions by multiplying with the molar weight ratio 46/30.

#### **Emission factors**

For  $NH_3$  the emission factors for untreated cattle slurry were adopted, see Haenel et al. (2020), Chapter 10.2, [1]. As the  $NO_x$  method for fertilizer application is used for the calculation of  $NO_x$  emissions from the application of residues, the emission factor for fertilizer application was used (see Haenel et al. (2020), Chapter 11.1 [1])

Table 8 shows the implied emission factors for  $NH_3$  emissions from application of residues from digested energy crops.

Table 8: IEF for NH₃-N

| IEF in | kg N                                                                  | H₃-N þ | er kg | N in  | digest | ted en | ergy  | crops |       |       |       |       |       |  |
|--------|-----------------------------------------------------------------------|--------|-------|-------|--------|--------|-------|-------|-------|-------|-------|-------|-------|--|
| 1990   | 1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 |        |       |       |        |        |       |       |       |       |       |       |       |  |
| 0.182  | 0.182                                                                 | 0.183  | 0.183 | 0.183 | 0.184  | 0.174  | 0.166 | 0.159 | 0.153 | 0.153 | 0.153 | 0.154 | 0.154 |  |

#### **Trend discussion for Key Sources**

The application of residues from anaerobic digestion of energy crops is a key source for NH<sub>3</sub>. Emissions are dominated by the amounts of N in the substrates fed into the digestion process and to a lesser extent by the increased use of application techniques with lower emission factors. They have become important since about 2005 and have risen sharply until 2013. Since then, they have changed little each year and tend to decrease slightly in the last few years. The latter is mostly due to a small negative trend of the amounts of energy crops digested.

#### Recalculations

3.D - Agricultural Soils 9/13

Table REC-4 shows the effects of recalculations on  $NH_3$  and  $NO_x$  emissions. Differences to last year's submission are mostly due to the update of activity data (recalculation No 12, see main agricultural page. Smaller effects, and only on NH3 emissions, derive from the modified consideration of the trailing shoe application in the inventory model GAS-EM (No 14). Further details on recalculations are described in Haenel et al. (2020), Chapter 3.5.2.

Table REC-4: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021

| NH <sub>3</sub> | NH <sub>3</sub> and NO <sub>x</sub> emissions from application of digested energy crops, in Gg |      |      |      |       |       |       |       |       |       |       |       |       |       |       |
|-----------------|------------------------------------------------------------------------------------------------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                 | SUB                                                                                            | 1990 | 1995 | 2000 | 2005  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  |
| NH <sub>3</sub> | 2021                                                                                           | 0.01 | 0.14 | 1.20 | 10.15 | 37.27 | 46.75 | 48.81 | 56.27 | 56.56 | 56.42 | 56.11 | 55.37 | 54.63 | 54.63 |
| NH <sub>3</sub> | 2020                                                                                           | 0.01 | 0.14 | 1.20 | 10.15 | 37.27 | 46.75 | 48.81 | 56.27 | 56.56 | 56.42 | 56.11 | 55.37 | 55.66 |       |
| NO <sub>x</sub> | 2021                                                                                           | 0.00 | 0.02 | 0.21 | 1.80  | 6.60  | 8.25  | 9.09  | 11.01 | 11.53 | 11.98 | 11.91 | 11.72 | 11.55 | 11.55 |
| NO <sub>x</sub> | 2020                                                                                           | 0.00 | 0.02 | 0.21 | 1.80  | 6.60  | 8.25  | 9.09  | 11.01 | 11.53 | 11.98 | 11.91 | 11.72 | 11.77 |       |

#### **Planned improvements**

No improvements are planned at present.

## 3.D.a.3 - Urine and dung deposited by grazing animals

The calculation of  $NH_3$  and  $NO_x$  (NO) emissions from N excretions on pasture is described in Haenel et al. (2020), Chapter 11.5 [1].

#### **Activity data**

Activity data for  $NH_3$  emissions during grazing is the amount of TAN excreted on pasture while for  $NO_x$  emissions it is the amount of N excreted on pasture.

Table 9 shows the N excretions on pasture. The TAN excretions are derived by multiplying the N excretions with the relative TAN contents provided in 3.B, Table 2.

Table 9: N excretions on pasture

| N excretion  | N excretions on pasture in % of total N excreted                      |      |      |      |      |      |      |      |      |      |      |      |      |      |  |
|--------------|-----------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|--|
|              | 1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 |      |      |      |      |      |      |      |      |      |      |      |      |      |  |
| Dairy cows   | 20.3                                                                  | 15.6 | 12.7 | 11.3 | 10.3 | 10.4 | 10.4 | 10.5 | 10.5 | 10.6 | 10.6 | 10.7 | 10.7 | 10.7 |  |
| Other cattle | 15.2                                                                  | 17.5 | 19.2 | 19.2 | 19.6 | 19.6 | 19.4 | 19.3 | 19.4 | 19.6 | 19.5 | 19.6 | 19.6 | 19.6 |  |
| Sheep        | 55.1                                                                  | 55.5 | 55.1 | 55.4 | 54.8 | 55.1 | 55.1 | 55.2 | 55.3 | 55.4 | 55.4 | 55.4 | 55.6 | 55.5 |  |
| Goats        | 34.2                                                                  | 34.2 | 34.2 | 34.2 | 34.2 | 34.2 | 34.2 | 34.2 | 34.2 | 34.2 | 34.2 | 34.2 | 34.2 | 34.2 |  |
| Horses       | 20.5                                                                  | 20.5 | 20.5 | 20.5 | 20.5 | 20.5 | 20.5 | 20.5 | 20.5 | 20.5 | 20.5 | 20.5 | 20.5 | 20.5 |  |

#### Methodology

 $NH_3$  emissions from grazing are calculated by multiplying the respective animal population (3.B, Table 1) with corresponding N excretions and relative TAN contents (3.B, Table 2) and the fraction of N excreted on pasture (Table 9). The result is multiplied with the animal specific emission factor (Table 10). NO emissions are calculated the same way with the exception that the emission factor is related to N excreted instead of TAN.

3.D - Agricultural Soils 10/13

#### **Emission Factors**

The emission factors for  $NH_3$  are taken from EMEP (2016)-3B-29, Table 3.9 [10]. They relate to the amount of TAN excreted on pasture. Following the intention of EMEP, 2016-3D, Table 3.11 [10], the inventory uses for NOx the same emission factor as for the application of inorganic fertilizer (see Table 3). In order to obtain  $NO_x$  emissions (as NO2) the NO-N emission factor of 0.12 kg NO-N per kg N excreted is multiplied by 46/14.

Table 10: Emission factors for emissions of NH<sub>3</sub> and NO from grazing

| <b>Emission factors</b> |                                   |
|-------------------------|-----------------------------------|
| Dairy cows              | 0.14 kg NH3-N per kg TAN excreted |
| Other cattle            | 0.14 kg NH3-N per kg TAN excreted |
| Horses                  | 0.35 kg NH3-N per kg TAN excreted |
| Sheep, goats            | 0.09 kg NH3-N per kg TAN excreted |
| All animals             | 0.012 kg NO-N per kg N excreted   |

#### **Trend discussion for Key Sources**

Emissions from urine and dung deposited by grazing animals are no key sources.

#### Recalculations

Table REC-5 shows the effects of recalculations on  $NH_3$  and NOx emissions. Details on the agricultural recalculations can be found on the main agricultural page. By far the biggest impact has the update of the N-excretion of suckler cows (recalculation No 4, see main agricultural page. Further details on recalculations are described in Haenel et al. (2020), Chapter 3.5.2.

Table REC-5: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021

| NH <sub>3</sub> | and l | NO <sub>x</sub> eı | missio | ns fro | m gra | azing, | in Gg |       |       |       |       |       |       |       |       |
|-----------------|-------|--------------------|--------|--------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                 | SUB   | 1990               | 1995   | 2000   | 2005  | 2010   | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  |
| NH <sub>3</sub> | 2021  | 22.16              | 18.04  | 16.10  | 14.21 | 13.61  | 13.30 | 13.22 | 13.35 | 13.43 | 13.51 | 13.34 | 13.20 | 12.93 | 12.78 |
| NH <sub>3</sub> | 2020  | 14.45              | 11.59  | 10.74  | 9.53  | 8.93   | 8.79  | 8.77  | 8.87  | 8.95  | 9.02  | 8.94  | 8.85  | 8.71  |       |
| NO <sub>x</sub> | 2021  | 8.44               | 6.89   | 6.22   | 5.53  | 5.30   | 5.17  | 5.15  | 5.20  | 5.25  | 5.29  | 5.24  | 5.20  | 5.13  | 5.10  |
| NO <sub>x</sub> | 2020  | 8.65               | 7.03   | 6.84   | 6.06  | 5.80   | 5.67  | 5.65  | 5.73  | 5.80  | 5.85  | 5.80  | 5.75  | 5.66  |       |

#### **Planned improvements**

No improvements are planned at present.

# 3.D.c - Farm-level agricultural operations including storage, handling and transport of agricultural products

In this category Germany reports TSP,  $PM_{10}$  and  $PM_{2.5}$  emissions from crop production according to EMEP (2016)-3D-11 [10]. For details see Haenel et al. (2020), Chapter 11.14 [1].

#### **Activity data**

3.D - Agricultural Soils 11/13

The activity data is the total area of arable and horticultural land. This data is provided by official statistics.

Table 11: AD for the estimation of TSP, PM<sub>10</sub> and PM<sub>2.5</sub> emissions from soils

| 4 | Arable                                                                                          | and he | orticult | ural la | nd in 1 | 000*ha |        |        |        |        |        |        |        |        |
|---|-------------------------------------------------------------------------------------------------|--------|----------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|   | 1990   1995   2000   2005   2010   2011   2012   2013   2014   2015   2016   2017   2018   2019 |        |          |         |         |        |        |        |        |        |        |        |        |        |
| [ | 11,179                                                                                          | 10,257 | 10,683   | 10,902  | 11,411  | 11,431 | 11,421 | 11,478 | 11,475 | 11,346 | 11,281 | 11,273 | 11,181 | 11,163 |

#### Methodology

As the Tier 2 methodology described in EMEP (2016)-3D-17 [10] cannot be used due to lack of input data, the Tier 1 methodology described in EMEP(2016)-3D-11ff [10] is used.

#### **Emission factors**

Emission factors given in EMEP (2016)-3D-12 [10] are used. The Guidebook does not indicate whether EFs have considered the condensable component (with or without).

Table 12: Emission factors for PM emissions from agricultural soils

| <b>Emission factor</b> | kg ha <sup>-1</sup> |
|------------------------|---------------------|
| EF <sub>TSP</sub>      | 1.56                |
| EF <sub>PM10</sub>     | 1.56                |
| EF <sub>PM2.5</sub>    | 0.06                |

#### **Trend discussion for Key Sources**

TSP and  $PM_{10}$  are key sources. Emissions depend only on the areas covered. These are relatively constant, with a very slight decrease over the past 10 years.

#### **Recalculations**

Table REC-6 shows the effects of recalculations on particulate matter emissions. All differences to last year submission result from including new crop species (recalculation No 15, see main agricultural page. Further details on recalculations are described in Haenel et al. (2020), Chapter 3.5.2.

Table REC-6: Comparison of particle emissions (TSP,  $PM_{10} \& PM_{2.5}$ ) of the submissions (SUB) 2020 and 2021

| TSP,              | PM <sub>10</sub> , | PM <sub>2.5</sub> | emis  | sions | from  | crop p | roduc | tion, | in Gg |       |       |       |       |       |       |
|-------------------|--------------------|-------------------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                   | SUB                | 1990              | 1995  | 2000  | 2005  | 2010   | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  |
| TSP               | 2021               | 17.44             | 16.00 | 16.67 | 17.01 | 17.80  | 17.83 | 17.82 | 17.91 | 17.90 | 17.70 | 17.60 | 17.59 | 17.44 | 17.41 |
| TSP               | 2020               | 17.44             | 16.00 | 16.67 | 17.01 | 17.80  | 17.83 | 17.82 | 17.91 | 17.90 | 17.70 | 17.60 | 17.59 | 17.44 |       |
| PM <sub>10</sub>  | 2021               | 17.44             | 16.00 | 16.67 | 17.01 | 17.80  | 17.83 | 17.82 | 17.91 | 17.90 | 17.70 | 17.60 | 17.59 | 17.44 | 17.41 |
| PM <sub>10</sub>  | 2020               | 17.44             | 16.00 | 16.67 | 17.01 | 17.80  | 17.83 | 17.82 | 17.91 | 17.90 | 17.70 | 17.60 | 17.59 | 17.44 |       |
| PM <sub>2.5</sub> | 2021               | 0.67              | 0.62  | 0.64  | 0.65  | 0.68   | 0.69  | 0.69  | 0.69  | 0.69  | 0.68  | 0.68  | 0.68  | 0.67  | 0.67  |
| PM <sub>2.5</sub> | 2020               | 0.67              | 0.62  | 0.64  | 0.65  | 0.68   | 0.69  | 0.69  | 0.69  | 0.69  | 0.68  | 0.68  | 0.68  | 0.67  |       |

#### **Planned improvements**

3.D - Agricultural Soils 12/13

No improvements are planned at present.

## 3.D.e - Cultivated crops

In this category Germany reports NMVOC emissions from crop production according to EMEP (2016)-3D-11 [10]. For details see Haenel et al. (2020), Chapter 11.11, [1].

#### **Activity data**

The activity data is the total area of arable land and grassland. This data is provided by official statistics.

Table 13: AD for the estimation of NMVOC emissions from crop production

| Arable                                                                                            | land a                                                                                          | nd gra | ssland | in 100 | 0*ha |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------|--------|--------|------|--|--|--|--|--|--|--|--|--|
| 1990                                                                                              | 1990   1995   2000   2005   2010   2011   2012   2013   2014   2015   2016   2017   2018   2019 |        |        |        |      |  |  |  |  |  |  |  |  |  |
| 16,506 15,312 15,498 15,561 15,734 15,752 15,729 15,769 15,802 15,719 15,662 15,647 15,570 15,563 |                                                                                                 |        |        |        |      |  |  |  |  |  |  |  |  |  |

#### Methodology

In EMEP (2016)-3D-15ff [10] the methodology is described how the EMEP Tier 1 EF was estimated. This methodology was adopted to estimate German emissions. It is considered a Tier 2 methodology.

#### **Emission Factors**

The emission factors for wheat, rye, rape and grass (15°C) given in EMEP (2016)-3D-16, Table A3-3 [10] were used. For all grassland areas the grass (15°C) EF is used, for all other crops except rye and rape the EF of wheat is used. Table 14 shows the implied emission factors for NMVOC emissions from crop production. The implied emission factor is defined as ratio of the total NMVOC emissions from cultivated crops to the total area given by activity data.

Table 14: IEF for NMVOC emissions from crop production

| IEF fo | IEF for NMVOC emissions from crop production in kg ha.1               |      |      |      |      |      |      |      |      |      |      |      |      |  |  |
|--------|-----------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|--|
| 1990   | 1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 |      |      |      |      |      |      |      |      |      |      |      |      |  |  |
| 0.47   | 0.53                                                                  | 0.57 | 0.59 | 0.61 | 0.57 | 0.64 | 0.66 | 0.72 | 0.63 | 0.62 | 0.62 | 0.50 | 0.55 |  |  |

#### Recalculations

Table REC-7 shows the effects of recalculations on NMVOC emissions. All differences to last year's submission result from including new crop species (recalculation No 15, see main agricultural page. Further details on recalculations are described in Haenel et al. (2020), Chapter 3.5.2.

Table REC-7: Comparison of NMVOC emissions of the submissions (SUB) 2020 and 2021

| NMV  | OC en                                                                                                 | nissio | ns fro | m cro | p pro | ductio | on, in | Gg    |       |      |      |      |      |      |
|------|-------------------------------------------------------------------------------------------------------|--------|--------|-------|-------|--------|--------|-------|-------|------|------|------|------|------|
| SUB  | SUB   1990   1995   2000   2005   2010   2011   2012   2013   2014   2015   2016   2017   2018   2019 |        |        |       |       |        |        |       |       |      |      |      |      |      |
| 2021 | 7.69                                                                                                  | 8.19   | 8.79   | 9.17  | 9.53  | 9.03   | 10.05  | 10.36 | 11.40 | 9.91 | 9.69 | 9.74 | 7.82 | 8.56 |
| 2020 | 7.69                                                                                                  | 8.19   | 8.79   | 9.17  | 9.53  | 9.03   | 10.05  | 10.36 | 11.40 | 9.91 | 9.69 | 9.74 | 7.82 |      |

3.D - Agricultural Soils

#### **Planned improvements**

No improvements are planned at present.

#### **Uncertainty**

Details will be described in chapter 1.7.

1)

Rösemann et al. (2021): Rösemann C., Haenel H-D., Vos C., Dämmgen U., Döring U., Wulf S., Eurich-Menden B., Freibauer A., Döhler H., Schreiner C., Osterburg B. & Fuß, R. (2021): Calculations of gaseous and particulate emissions from German Agriculture 1990 –2019. Report on methods and data (RMD), Submission 2021. Thünen Report (in preparation).

https://www.thuenen.de/de/ak/arbeitsbereiche/emissionsinventare/

2)

EMEP (2019): EMEP/EEA air pollutant emission inventory guidebook – 2019, EEA Report No 13/2019, https://www.eea.europa.eu/publications/emep-eea-guidebook-2019.

3)

Stehfest E., Bouwman L. (2006): N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modelling of global emissions. Nutr. Cycl. Agroecosyst. 74, 207 – 228.

4

NIR (2021): National Inventory Report 2021 for the German Greenhouse Gas Inventory 1990-2019. Available in April 2021.