meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:agriculture:agricultural_soils:start [2021/02/11 16:49] – [Country specifics] doeringsector:agriculture:agricultural_soils:start [2022/09/19 07:57] (current) – Fix link hausmann
Line 2: Line 2:
  
 ===== Short description ===== ===== Short description =====
-^ NFR-Code                                                                                                                   ^ Name of Category                                                                                       ^ Method                                            ^ AD      ^ EF                                       ^ Key Category<sup>1</sup>                 ^ State of reporting         ^ +^ NFR-Code                                                                                                                   ^ Name of Category                                                                                       ^ Method                                            ^ AD      ^ EF                                       ^ State of reporting         ^ 
-| **3.D**                                                                                                                    | **Agricultural Soils**                                                                                                                                           |                                          |                                          |                            | +| **3.D**                                                                                                                    | **Agricultural Soils**                                                                                                                                                                                    |                            | 
-| **consisting of / including source categories**                                                                                                                                                                                                                                                                                                                                                                ||||||| +| **consisting of / including source categories**                                                                                                                                                                                                                                                                                                                      |||||| 
-| [[start#da1_-_inorganic_n-fertilizers|3.D.a.1]]                                                                            | Inorganic N-fertilizers (includes also urea application)                                               | T2 (NH<sub>3</sub>), T1 (for NO<sub>x</sub>     | NS,RS   | D (NH<sub>3</sub>), D (NO<sub>x</sub>  | L & T: (NO<sub>x</sub>, NH<sub>3</sub>)  |                            | +| [[start#da1_-_inorganic_n-fertilizers|3.D.a.1]]                                                                            | Inorganic N-fertilizers (includes also urea application)                                               | T2 (NH<sub>3</sub>), T1 (for NO<sub>x</sub>     | NS,RS   | D (NH<sub>3</sub>), D (NO<sub>x</sub>                             | 
-| [[start#da2a_-_animal_manure_applied_to_soils|3.D.a.2.a]]                                                                  | Animal manure applied to soils                                                                         | T2, T3 (NH<sub>3</sub>), T1 (for NO<sub>x</sub> | M       | CS (NH<sub>3</sub>), D (NO<sub>x</sub> | L & T: (NO<sub>x</sub>, NH<sub>3</sub> |                            | +| [[start#da2a_-_animal_manure_applied_to_soils|3.D.a.2.a]]                                                                  | Animal manure applied to soils                                                                         | T2, T3 (NH<sub>3</sub>), T1 (for NO<sub>x</sub> | M       | CS (NH<sub>3</sub>), D (NO<sub>x</sub> |                            | 
-| [[start#da2b_sewage_sludge_applied_to_soils\\ |3.D.a.2.b]]                                                                 | Sewage sludge applied to soils                                                                         | T1 (for NH<sub>3</sub>,NO<sub>x</sub>           | NS, RS  | D (NH<sub>3</sub>), D (NO<sub>x</sub>  | no key category                          |                            | +| [[start#da2b_sewage_sludge_applied_to_soils\\|3.D.a.2.b]]                                                                  | Sewage sludge applied to soils                                                                         | T1 (for NH<sub>3</sub>,NO<sub>x</sub>           | NS, RS  | D (NH<sub>3</sub>), D (NO<sub>x</sub>                             | 
-| [[start#da2c_-_other_organic_fertilizers_applied_to_soils|3.D.a.2.c]]                                                      | Other organic fertilisers applied to soils (including compost)                                         | T2 (for NO<sub>x</sub>, NH<sub>3</sub>          | M       | CS                                       | L & T: (NH<sub>3</sub>                 |                            | +| [[start#da2c_-_other_organic_fertilizers_applied_to_soils|3.D.a.2.c]]                                                      | Other organic fertilisers applied to soils (including compost)                                         | T2 (for NO<sub>x</sub>, NH<sub>3</sub>          | M       | CS                                                                  | 
-| [[start#da3_-_urine_and_dung_deposited_by_grazing_animals\\ |3.D.a.3]]                                                     | Urine and dung deposited by grazing animals                                                            | T1 (for NH<sub>3</sub>, NO<sub>x</sub>          | NS,RS   | D                                        | no key category                          |                            | +| [[start#da3_-_urine_and_dung_deposited_by_grazing_animals\\|3.D.a.3]]                                                      | Urine and dung deposited by grazing animals                                                            | T1 (for NH<sub>3</sub>, NO<sub>x</sub>          | NS,RS   | D                                        |                            | 
-| [[start#dc_-_farm-level_agricultural_operations_including_storage_handling_and_transport_of_agricultural_products|3.D.c]]  | Farm-level agricultural operations including storage, handling and transport of agricultural products  | T1 (for TSP, PM<sub>10</sub>, PM<sub>2.5</sub>  | NS, RS  | D                                        | L & T: (TSP, PM<sub>10</sub>           |                            | +| [[start#dc_-_farm-level_agricultural_operations_including_storage_handling_and_transport_of_agricultural_products|3.D.c]]  | Farm-level agricultural operations including storage, handling and transport of agricultural products  | T1 (for TSP, PM<sub>10</sub>, PM<sub>2.5</sub>  | NS, RS  | D                                        |                            | 
-| 3.D.d                                                                                                                      | Off-farm storage, handling and transport of bulk agricultural products                                                                                           |                                          |                                          | NA & for Black Carbon, NR  | +| 3.D.d                                                                                                                      | Off-farm storage, handling and transport of bulk agricultural products                                                                                                                                    | NA & for Black Carbon, NR  | 
-| [[start#de_-_cultivated_crops|3.D.e]]                                                                                      | Cultivated crops                                                                                       | T2 (NMVOC)                                        | NS, RS  | D                                        | no key category                          |                            | +| [[start#de_-_cultivated_crops|3.D.e]]                                                                                      | Cultivated crops                                                                                       | T2 (NMVOC)                                        | NS, RS  | D                                        |                            | 
-| [[3Df_Agriculture other|3.D.f]]                                                                                            | Agriculture other including use of pesticides                                                          | T2 (HCB)                                          | NS      | D                                        | L & T: HCB                               |                            |+| [[3Df_Agriculture other|3.D.f]]                                                                                            | Agriculture other including use of pesticides                                                          | T2 (HCB)                                          | NS      | D                                        |                            |
  
 +^  Key Category  ^  SO₂      NOₓ  ^  NH₃  ^  NMVOC  ^  CO    BC    Pb    Hg    Cd    Diox  ^  PAH  ^  HCB  ^  TSP  ^  PM₁₀  ^  PM₂ ₅  ^
 +| 3.D.a.1          -          |  L/-  |  L/T  |  -      |  -    |  -    |  -    |  -    |  -    |  -      -    |  -    |  -    |  -      -      |
 +| 3.D.a.2.a        -          |  L/-  |  L/T  |  -      |  -    |  -    |  -    |  -    |  -    |  -      -    |  -    |  -    |  -      -      |
 +| 3.D.a.2.b        -          |  -/-  |  -/-  |  -      |  -    |  -    |  -    |  -    |  -    |  -      -    |  -    |  -    |  -      -      |
 +| 3.D.a.2.c        -          |  -/-  |  L/T  |  -      |  -    |  -    |  -    |  -    |  -    |  -      -    |  -    |  -    |  -      -      |
 +| 3.D.a.3          -          |  -/-  |  -/-  |  -      |  -    |  -    |  -    |  -    |  -    |  -      -    |  -    |  -    |  -      -      |
 +| 3.D.c            -          |  -    |  -    |  -      |  -    |  -    |  -    |  -    |  -    |  -      -    |  -    |  L/-  |  L/-    -/-    |
 +| 3.D.e            -          |  -    |  -    |  -/-    |  -    |  -    |  -    |  -    |  -    |  -      -    |  -    |  -    |  -      -      |
 +| 3.D.f            -          |  -    |  -    |  -      |  -    |  -    |  -    |  -    |  -    |  -      -    |  L/-  |  -    |  -      -      |
 + {{page>general:Misc:LegendEIT:start}}
 +\\
  
- +===== Country specifics =====
- +
-<hidden> +
- +
----- +
-Legend +
-T = key source by Trend / L = key source by Level +
- +
----- +
- +
-//Methods//  +
-D: Default +
-RA: Reference Approach +
-T1: Tier 1 / Simple Methodology * +
-T2: Tier 2* +
-T3: Tier 3 / Detailed Methodology * +
-C: CORINAIR +
-CS: Country Specific +
-M: Model +
-as described in the EMEP/CORINAIR Emission Inventory Guidebook - 2019, in the group specific chapters.  +
- +
----- +
- +
-//AD:- Data Source for Activity Data // +
-NS: National Statistics +
-RS: Regional Statistics +
-IS: International Statistics +
-PS: Plant Specific data +
-AS: Associations, business organisations +
-Q: specific questionnaires, surveys +
- +
----- +
- +
-//EF - Emission Factors//  +
-D: Default (EMEP Guidebook) +
-C: Confidential +
-CS: Country Specific +
-PS: Plant Specific data</hidden> +
- +
-====== Country specifics ======+
  
 {{ :sector:agriculture:agricultural_soils.png?nolink&600}} {{ :sector:agriculture:agricultural_soils.png?nolink&600}}
  
-** NH<sub>3</sub> and NO<sub>x</sub>** +==== NH₃ and NOₓ ====
 In 2019, the category of agricultural soils emitted 311.3 kt NH<sub>3</sub> or 55.8 % of the total agricultural NH<sub>3</sub> emissions in Germany (557.8 kt NH<sub>3</sub>). The main contributions to the total NH<sub>3</sub> emissions from agricultural soils are the application of manure (3.D.a.2.a), with 174.1 kt (55.9 %) and the application of inorganic N-fertilizers (3.D.a.1) with 68.1 kt (12,2 %). In 2019, the category of agricultural soils emitted 311.3 kt NH<sub>3</sub> or 55.8 % of the total agricultural NH<sub>3</sub> emissions in Germany (557.8 kt NH<sub>3</sub>). The main contributions to the total NH<sub>3</sub> emissions from agricultural soils are the application of manure (3.D.a.2.a), with 174.1 kt (55.9 %) and the application of inorganic N-fertilizers (3.D.a.1) with 68.1 kt (12,2 %).
  
Line 67: Line 38:
 The application of residues from the digestion of energy crops (3.D.a.2.c) leads to 54.6 kt NH<sub>3</sub> or 17.5 %. N excretions on pastures (3.D.a.3) have a share of 12.8 kt NH<sub>3</sub> or 4.1 %. The application of residues from the digestion of energy crops (3.D.a.2.c) leads to 54.6 kt NH<sub>3</sub> or 17.5 %. N excretions on pastures (3.D.a.3) have a share of 12.8 kt NH<sub>3</sub> or 4.1 %.
  
-NH<sub>3</sub> emissions from application of residues from the digestion of energy crops are excluded from emission accounting by adjustment as they are not considered in the NEC and Gothenburg commitments (see Chapter 11 - Adjustments and Emissions Reduction Commitments).+NH<sub>3</sub> emissions from application of residues from the digestion of energy crops are excluded from emission accounting by adjustment as they are not considered in the NEC and Gothenburg commitments (see Chapter 11 - Adjustments and Emissions Reduction Commitments [[general:adjustments:adjustment_de-d|Adjustment DE - D - Nitrogen oxides (3.D.a.2.c Other organic fertilisers applied to soils (including compost)') &amp; Ammonia from Energy Crops]]).
  
-In 2019, agricultural soils were the source of 98.6 % (110.7 kt) of the total of NO<sub>x</sub> emissions in the agricultural category (112.2 kt). The NO<sub>x</sub> emissions from agricultural soils are mostly due to application of inorganic fertilizer (3.D.a.1) (50.6 %) and manure (3.D.a.2.a) (33.9 %). Application of residues from digested energy crops (3.D.a.2.c) contributes 10.4 % to agricultural soil emissions, 4.6 % are due to excretions on pastures (3.D.a.3). Emissions from application of sewage sludge (3.D.a.2.b)) contribute 0.5 %.+In 2019, agricultural soils were the source of 98.6 % (110.7 kt) of the total of NO<sub>x</sub> emissions in the agricultural category (112.2 kt). The NO<sub>x</sub> emissions from agricultural soils are mostly due to application of inorganic fertilizer (3.D.a.1) (50.6 %) and manure (3.D.a.2.a) (33.9 %). Application of residues from digested energy crops (3.D.a.2.c) contributes 10.4 % to agricultural soil emissions, 4.6 % are due to excretions on pastures (3.D.a.3). Emissions from application of sewage sludge (3.D.a.2.b) contribute 0.5 %.
  
-All NO<sub>x</sub> emissions from the agricultural category are excluded from emission accounting by adjustment as they are not considered in the NEC commitments (see Chapter 11 - Adjustments and Emissions Reduction Commitments).+All NO<sub>x</sub> emissions from the agricultural category are excluded from emission accounting by adjustment as they are not considered in the NEC commitments (see Chapter 11 - Adjustments and Emissions Reduction Commitments [[general:adjustments:adjustment_de-c|]] and [[general:adjustments:adjustment_de-d|Adjustment DE - D - Nitrogen oxides (3.D.a.2.c Other organic fertilisers applied to soils (including compost)') &amp; Ammonia from Energy Crops]]).
  
-**NMVOC** +==== NMVOC ==== 
- +In 2019, the category of agricultural soils contributed 8.6 kt NMVOC or 2.8 % to the total agricultural NMVOC emissions in Germany. The only emission source was cultivated crops (3.D.e). All NMVOC emissions from the agricultural category are excluded from emission accounting by adjustment as they are not considered in the NEC commitments (see [[general:adjustments:adjustment_de-c|]]).
-In 2019, the category of agricultural soils contributed 8.6 kt NMVOC or 2.8 % to the total agricultural NMVOC emissions in Germany. The only emission source was cultivated crops (3.D.e). All NMVOC emissions from the agricultural category are excluded from emission accounting by adjustment as they are not considered in the NEC commitments. +
- +
-** TSP, PM<sub>10</sub> & PM<sub>2.5</sub>**+
  
 +====  TSP, PM₁₀ & PM₂.₅ ====
 In 2019, agricultural soils contributed, respectively, 28.9 % (17.4 kt), 57.3 % (17.4 kt) and 15.2 % (0.7 kt) to the total agricultural TSP, PM<sub>10</sub> and PM<sub>2.5</sub> emissions (60.3 kt, 30.4 kt, 4.4 kt, respectively). The emissions are reported in category 3.D.c (Farm-level agricultural operations including storage, handling and transport of agricultural products). In 2019, agricultural soils contributed, respectively, 28.9 % (17.4 kt), 57.3 % (17.4 kt) and 15.2 % (0.7 kt) to the total agricultural TSP, PM<sub>10</sub> and PM<sub>2.5</sub> emissions (60.3 kt, 30.4 kt, 4.4 kt, respectively). The emissions are reported in category 3.D.c (Farm-level agricultural operations including storage, handling and transport of agricultural products).
  
  
 =====3.D.a.1 - Inorganic N-fertilizers ===== =====3.D.a.1 - Inorganic N-fertilizers =====
 +The calculation of NH<sub>3</sub> and NOx (NO) emissions from the application of inorganic fertilizers is described in Rösemann et al. (2021), Chapter 11.1 ((Rösemann et al. (2021): Rösemann C., Haenel H-D., Vos C., Dämmgen U., Döring U., Wulf S., Eurich-Menden B., Freibauer A., Döhler H., Schreiner C., Osterburg B. & Fuß, R. (2021): Calculations of gaseous and particulate emissions from German Agriculture 1990 –2019. Report on methods and data (RMD), Submission 2021. Thünen Report (in preparation). https://www.thuenen.de/de/fachinstitute/agrarklimaschutz/arbeitsbereiche/emissionsinventare)).
  
- +==== Activity Data ==== 
-The calculation of NH<sub>3</sub> and NOx (NO) emissions from the application of inorganic fertilizers is described in Haenel et al. (2020), Chapter 11.1, [1]. +German statistics report the amounts of fertilizers sold which are assumed to equal the amounts that are appliedSince the 2021 submission, storage effects are approximated by applying a moving average to the sales data  (moving centered three-year averagefor the last year a two-year average)
-Activity Data +
- +
-German statistics report the amount of fertilizers sold. Assuming that the change of fertilizers stocked is small compared with the amount of fertilizers sold, the amount of fertilizer sold is taken to be the amount of fertilizer applied.+
  
 //Table 1: AD for the estimation of NH<sub>3</sub> and NOx emissions from application of inorganic fertilizers// //Table 1: AD for the estimation of NH<sub>3</sub> and NOx emissions from application of inorganic fertilizers//
Line 104: Line 71:
  
  
-**Methodology**+==== Methodology ==== 
 +NH<sub>3</sub> emissions from the application of inorganic fertilizers are calculated using the Tier 2 approach according to EMEP (2019)-3D-14ff ((EMEP (2019): EMEP/EEA air pollutant emission inventory guidebook – 2019, EEA Report No 13/2019, https://www.eea.europa.eu/publications/emep-eea-guidebook-2019.)), distinguishing between various fertilizer types, see Table 2. For NO<sub>x</sub>, the Tier 1 approach described in EMEP (2019) [10]-3D-11 is applied.
  
-NH<sub>3</sub> emissions from the application of inorganic fertilizers are calculated using the Tier 2 approach according to EMEP (2016)-3D-14ff [10], distinguishing between various fertilizer types, see Table 2. For NO<sub>x</sub>, the Tier 1 approach described in EMEP (2016) [10]-3D-11ff is applied. +==== Emission factors ==== 
- +The emission factors for NH<sub>3</sub> depend on fertilizer type, see EMEP (2019)-3D-15. Table 2 lists the EMEP emission factors for the fertilizers used in the inventory. In order to reflect average German conditions the emission factors for cool climate and a pH value lower than 7 was chosen.
-**Emission factors** +
- +
-The emission factors for NH<sub>3</sub> depend on fertilizer type, see EMEP (2016)-3D-15 [10]. Table 2 lists the EMEP emission factors for the fertilizers used in the inventory. In order to reflect average German conditions the emission factors for cool climate and a pH value lower than 7 was chosen.+
  
 //Table 2: NH<sub>3</sub>-EF for inorganic fertilizers// //Table 2: NH<sub>3</sub>-EF for inorganic fertilizers//
  
-  Inorganic fertilizers, emission factors in kg NH<sub>3</sub> per kg fertilizer N          ^^ + Inorganic fertilizers, emission factors in kg NH<sub>3</sub> per kg fertilizer N          || 
-^ Fertilizer type                                                                     ^ EF     +^ Fertilizer type                                                                     EF    
-| Calcium ammonium nitrate                                                            |  0.008 | +| Calcium ammonium nitrate                                                           |  0.008 | 
-| Nitrogen solutions (UREA AN)                                                        |  0.098 | +| Nitrogen solutions (UREA AN)                                                       |  0.098 | 
-| Urea                                                                                |  0.155 | +| Urea                                                                               |  0.155 | 
-| Ammonium phosphates                                                                 |  0.050 | +| Ammonium phosphates                                                                |  0.050 | 
-| Other NK and NPK                                                                    |  0.050 | +| Other NK and NPK                                                                   |  0.050 | 
-| Other straight fertilizers                                                          |  0.010 |+| Other straight fertilizers                                                         |  0.010 |
  
-For NO<sub>x</sub>, the simpler methodology by EMEP (2016)-3D-11ff [10] was used. The emission factor 0.040 from EMEP, 2016-3D, Table 3.1 has the units of kg N2O per kg fertilizer N and was derived from Stehfest and Bouwman (2006), [8] . The German inventory uses the emission factor 0.012 kg NO-N per kg N derived from Stehfest and Bouwman (2006). This is equivalent to an emission factor of 0.03943 kg NO<sub>x</sub> per kg fertilizer N (obtained by multiplying 0.012 kg NO-N per kg N with the molar weight ratio 46/14 for NO2: NO). The inventory uses the unrounded emission factor.+For NO<sub>x</sub>, the simpler methodology by EMEP (2019)-3D-11 was used. The emission factor 0.040 from EMEP, 2019-3D, Table 3.1 has the units of kg N<sub>2</sub>per kg fertilizer N and was derived from Stehfest and Bouwman (2006) ((Stehfest E.Bouwman L. (2006): N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modelling of global emissions. Nutr. Cycl. Agroecosyst. 74, 207 – 228.)). The German inventory uses the emission factor 0.012 kg NO-N per kg N derived from Stehfest and Bouwman (2006). This is equivalent to an emission factor of 0.03943 kg NO<sub>x</sub> per kg fertilizer N (obtained by multiplying 0.012 kg NO-N per kg N with the molar weight ratio 46/14 for NO<sub>2</sub>: NO). The inventory uses the unrounded emission factor.
  
 //Table 3: Emission factor for NO<sub>x</sub> emissions from fertilizer application// //Table 3: Emission factor for NO<sub>x</sub> emissions from fertilizer application//
Line 130: Line 95:
 | EF<sub>fert</sub>  |                          0.012 |                                   0.039 | | EF<sub>fert</sub>  |                          0.012 |                                   0.039 |
  
-**Recalculations**+==== Trend discussion for Key Sources ==== 
 +In the last five years (and in the last three years in dramatic fashion) fertilizer sales have decreased. Emissions have fallen accordingly. This is even more the case with NH<sub>3</sub> than with NO<sub>x</sub>, as total NH<sub>3</sub> from the application of mineral fertilizers is very strongly correlated with the amount of urea applied (R<sup>2</sup> = 0.89), the sales of which have decreased more than for all other mineral fertilizers. 
 + 
 + 
 +==== Recalculations ==== 
 +Table REC-1 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions. The procedure of temporal averaging of activity data has been applied for the first time (**recalculation reason 13**, see [[sector:agriculture:start|main page of the agricultural sector]]). It results in smoothing of extreme values and redistribution of emissions between neighbouring years. Hence, the emissions from fertilizer application changed markedly in every year compared to last year’s submission.
  
  
Line 143: Line 113:
 | **NO<sub>x</sub>**                                                               | 2020  |  85.31  |  70.48  |  79.42  |  70.12  |  61.87  |  70.44  |  64.68  |  65.01  |  66.05  |  71.87    67.45    65.41  |  59.01  |         | | **NO<sub>x</sub>**                                                               | 2020  |  85.31  |  70.48  |  79.42  |  70.12  |  61.87  |  70.44  |  64.68  |  65.01  |  66.05  |  71.87    67.45    65.41  |  59.01  |         |
  
-**Planned improvements** +==== Planned improvements ====
 No improvements are planned at present. No improvements are planned at present.
  
 =====  3.D.a.2.a - Animal manure applied to soils ===== =====  3.D.a.2.a - Animal manure applied to soils =====
 +In this sub category Germany reports the NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from application of manure (including application of anaerobically digested manure). For an overview see Rösemann et al. (2021), Chapter 11.2.
  
- +==== Activity data ====
-In this sub category Germany reports the NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from application of manure (including application of anaerobically digested manure). For an overview see Haenel et al. (2020), Chapter 11.2, [1]. +
- +
-**Activity data** +
 The calculation of the amount of N in manure applied is based on the N mass flow approach (see 3.B). It is the total of N excreted by animals in the housing and the N imported with bedding material minus N losses by emissions of N species from housing and storage. Hence, the amount of total N includes the N contained in anaerobically digested manures to be applied to the field. The calculation of the amount of N in manure applied is based on the N mass flow approach (see 3.B). It is the total of N excreted by animals in the housing and the N imported with bedding material minus N losses by emissions of N species from housing and storage. Hence, the amount of total N includes the N contained in anaerobically digested manures to be applied to the field.
  
-The frequencies of application techniques and incorporation times as well as the underlying data sources are described in Haenel et al. (2020), Chapter 3.4.3, [1]. The frequencies are provided e. g. in the NIR 2020 [11], Chapter 19.3.2.+The frequencies of application techniques and incorporation times as well as the underlying data sources are described in Rösemann et al. (2021), Chapter 3.4.3. The frequencies are provided e. g. in the NIR 2021((NIR (2021): National Inventory Report 2021 for the German Greenhouse Gas Inventory 1990-2019. Available in April 2021.)), Chapter 19.3.2.
  
 //Table 4: AD for the estimation of NH<sub>3</sub> and  NO<sub>x</sub> emissions from application of manure// //Table 4: AD for the estimation of NH<sub>3</sub> and  NO<sub>x</sub> emissions from application of manure//
Line 164: Line 130:
 |                           1,102 |    964 |    949 |    922 |    931 |    938 |    955 |    968 |    982 |    978 |    974 |    971 |    959 |    952 | |                           1,102 |    964 |    949 |    922 |    931 |    938 |    955 |    968 |    982 |    978 |    974 |    971 |    959 |    952 |
  
-**Methodology** 
  
-NH<sub>3</sub> emissions from manure application are calculated separately for each animal species in the mass flow approach by multiplying the respective TAN amount with NH<sub>3</sub> emission factors for the various manure application techniques. For details see [3-b-manure-management 3.B] and Haenel et al. (2020), Chapter 4 to 8 and 11.3, [1]+==== Methodology ==== 
-For NO<sub>x</sub> emissions from manure application the inventory calculates NO-N emissions (see Haenel et al. (2020), Chapter 11.2, [1] that are subsequently converted into NO<sub>x</sub> emissions by multiplying with the molar weight ratio 46/14. The Tier 1 approach for the application of inorganic fertilizer as described in EMEP (2016)-3D-11ff [10] is used, as no specific methodology is available for manure application. +NH<sub>3</sub> emissions from manure application are calculated separately for each animal species in the mass flow approach by multiplying the respective TAN amount with NH<sub>3</sub> emission factors for the various manure application techniques. For details see [[sector:agriculture:manure_management:start|[3-b-manure-management 3.B]]] and Rösemann et al. (2021), Chapter 4 to 8 and 11.3. 
- +For NO<sub>x</sub> emissions from manure application the inventory calculates NO-N emissions (see Rösemann et al. (2021), Chapter 11.2, that are subsequently converted into NO<sub>x</sub> emissions by multiplying with the molar weight ratio 46/14. The Tier 1 approach for the application of inorganic fertilizer as described in EMEP (2019)-3D-11 is used, as no specific methodology is available for manure application.
-**Emission factors**+
  
 +==== Emission factors ====
 Table 5 shows the time series of the overall German NH<sub>3</sub> IEF defined as the ratio of total NH<sub>3</sub>-N emission from manure application to the total amount of N spread with manure. Table 5 shows the time series of the overall German NH<sub>3</sub> IEF defined as the ratio of total NH<sub>3</sub>-N emission from manure application to the total amount of N spread with manure.
  
Line 179: Line 144:
  
 For NO<sub>x</sub> the same emission factor as for the application of inorganic fertilizer was used (see Table 3). For NO<sub>x</sub> the same emission factor as for the application of inorganic fertilizer was used (see Table 3).
-Trend discussion for Key Sources 
  
-Both NH<sub>3</sub> and NO<sub>x</sub> emissions from the application of animal manures are key sources. Total NO<sub>x</sub> is calculated proportionally to the total N in the manures applied which remarkably decreased from 1990 to 1991 due to the decline in animal numbers following the German reunification (reduction of livestock numbers in Eastern Germany). Since then the amount of N in manure applied shows no significant trend (1005 +/- 30 Gg N), see Table 4 and therefore there is no trend in the NO<sub>x</sub> emissions.+==== Trend discussion for Key Sources ==== 
 +Both NH<sub>3</sub> and NO<sub>x</sub> emissions from the application of animal manures are key sources. Total NO<sub>x</sub> is calculated proportionally to the total N in the manures applied which remarkably decreased from 1990 to 1991 due to the decline in animal numbers following the German reunification (reduction of livestock numbers in Eastern Germany). Since then the amount of N in manure applied shows no significant trend (950 +/- 40 Gg N), see Table 4 and therefore there is no trend in the NO<sub>x</sub> emissions.
 For total NH<sub>3</sub> emissions even after 1991 there is a slight negative trend. This is due to the increasing use of application practices with lower NH<sub>3</sub> emission factors. For total NH<sub>3</sub> emissions even after 1991 there is a slight negative trend. This is due to the increasing use of application practices with lower NH<sub>3</sub> emission factors.
 For both gases, emissions are slightly decreasing since 2015. This is due to the fact that cattle and swine animal numbers are declining. For both gases, emissions are slightly decreasing since 2015. This is due to the fact that cattle and swine animal numbers are declining.
  
-**Recalculations**+==== Recalculations ==== 
 +Table REC-2 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> .The total emissions of NH<sub>3</sub> and NO<sub>x</sub>  from application of manure are significantly lower than those of last year’s submission. These differences are predominantly caused by the update of the models of dairy cows, calves, heifers and male beef cattle, see [[sector:agriculture:start|main page of the agricultural sector]], list of **recalculation reasons, No. 1 through 3**. Much smaller is the impact of the updates of activity data for male cattle > 2 years, pigs, poultry and sheep (see **recalculation reasons 4, 6, 7, and 9 through 12**) as well as the update of activity data for air scrubbing systems in pig and broiler houses (see **recalculation reasons 8 and 10**). Further details on recalculations are described in Rösemann et al. (2021), Chapter 3.5.2.
  
-Table REC-2 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions. The overall recalculation effects are relatively small. The biggest impact has the update of the N excretions of suckler cows (recalculation No 4, see main agricultural page) and pullets (No 10). Smaller effects, and only on NH<sub>3</sub> emissions, derive from the modified consideration of the trailing shoe application in the inventory model GAS-EM (No 14). Other recalculations only have a minor impact and recalculations 1, 12, 13, 15 and 16 do not result in any effect on emissions from manure application. Further details on recalculations are described in Haenel et al. (2020), Chapter 3.5.2. 
  
 //Table REC-2: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021// //Table REC-2: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021//
Line 199: Line 164:
  
  
-**Planned improvements** +==== Planned improvements ====
 No improvements are planned at present. No improvements are planned at present.
  
 ===== 3.D.a.2.b – Sewage sludge applied to soils ===== ===== 3.D.a.2.b – Sewage sludge applied to soils =====
 +The calculation of NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from application of sewage sludge is described in Rösemann et al. (2021), Chapter 11.4.
  
- +==== Activity data ==== 
-The calculation of NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from application of sewage sludge is described in Haenel et al. (2020), Chapter 11.4, [1]. +N quantities from application of sewage sludge were calculated from data of the German Environment Agency and (since 2009) from data of the Federal Statistical Office (see Table 6). 
- +
-**Activity data** +
- +
-N quantities from application of sewage sludge were calculated from data of the German Environment Agency and (since 2009) from data of the Federal Statistical Office (see Table 6). Hence, there was no need to use the “per capita” activity data as proposed by EMEP (2016)-3.D, Table 3-1 [10].+
  
 //Table 6: AD for the estimation of NH<sub>3</sub> and NO<sub>x</sub> emissions from application of sewage sludge// //Table 6: AD for the estimation of NH<sub>3</sub> and NO<sub>x</sub> emissions from application of sewage sludge//
Line 217: Line 178:
 |                                    27 |     35 |     33 |     27 |     26 |     25 |     25 |     22 |     21 |     19 |     19 |     14 |     13 |     13 | |                                    27 |     35 |     33 |     27 |     26 |     25 |     25 |     22 |     21 |     19 |     19 |     14 |     13 |     13 |
  
-**Methodology**+==== Methodology ==== 
 +A tier 1 methodology is used (EMEP, 2019, 3D, Chapter 3.3.1). NH<sub>3</sub> and NO<sub>x</sub> emissions are calculated by multiplying the amounts of N in sewage sludge applied with the respective emission factors.
  
-A tier 1 methodology is used (EMEP, 2016, 3D, Chapter 3.3.[10]). NH<sub>3</sub> and NO<sub>x</sub> emissions are calculated by multiplying the amounts of in sewage sludge applied with the respective emission factors.+==== Emission factors ==== 
 +EMEP (2019)-3.D, Table 3-provides a Tier 1 emission factor for NH<sub>3</sub> (0.13 kg NH3 per kg N appliedemissions from application of sewage sludgeThe German inventory uses the equivalent emission factor in NH<sub>3</sub>-N units which is 0.11 kg NH<sub>3</sub>-N per kg N applied (cf. the derivation of the emission factor described in the appendix of EMEP (2019)-3D, page 26-27). 
 +For NO<sub>x</sub> the same emission factor like for the application of inorganic fertilizer was used (see Table 3).
  
-**Emission factors** 
- 
-EMEP (2016)-3.D, Table 3-1 [10] provides Tier 1 emissions factors for NH<sub>3</sub> and NOx emissions from application of sewage sludge. However, it must be noted that the units of the NH<sub>3</sub> emission factor provided in EMEP (2016)-3.D, Table 3-1 [10] are incorrect. It must read 0.13 kg NH<sub>3</sub> per kg N applied instead of 13 kg NH<sub>3</sub> per capita, see EMEP (2016)-3.D, Appendix A1.2.2.1. The German inventory uses the equivalent emission factor in NH<sub>3</sub>-N units which is 0.11 kg NH<sub>3</sub>-N per kg N applied (cf. the derivation of the emission factor described in the appendix of EMEP (2016)-3D, page 25-26, [10]). 
-For NO<sub>x</sub> the same emission factor like for the application of inorganic fertilizer was used (see Table 3). 
-Trend discussion for Key Sources 
  
 +==== Trend discussion for Key Sources ====
 NH<sub>3</sub> and NO<sub>x</sub> emissions from the application of sewage sludge are no key sources. NH<sub>3</sub> and NO<sub>x</sub> emissions from the application of sewage sludge are no key sources.
  
-**Recalculations** +==== Recalculations ==== 
- +Table REC-3 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions. The only change compared to last year’s submission occurs for the year 2018, due to the update of the activity data (see [[sector:agriculture:start|main page of the agricultural sector]], **recalculation No 14**. Further details on recalculations are described in Rösemann et al. (2021), Chapter 3.5.2.
-Table REC-3 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions. The only change compared to last year’s submission occurs for the year 2017, due to the update of the activity data (recalculation No 13, see main agricultural page. Further details on recalculations are described in Haenel et al. (2020), Chapter 3.5.2.+
  
 //Table REC-3: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021// //Table REC-3: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021//
Line 242: Line 201:
 | **NO<sub>x</sub>**                                                                    | 2020  |   1.08 |   1.39 |   1.30 |   1.08 |   1.03 |   0.99 |   0.98 |   0.85 |   0.84 |   0.74 |   0.74 |   0.56 |   0.56 |        | | **NO<sub>x</sub>**                                                                    | 2020  |   1.08 |   1.39 |   1.30 |   1.08 |   1.03 |   0.99 |   0.98 |   0.85 |   0.84 |   0.74 |   0.74 |   0.56 |   0.56 |        |
  
-**Planned improvements** +==== Planned improvements ====
 No improvements are planned at present. No improvements are planned at present.
  
 ===== 3.D.a.2.c - Other organic fertilizers applied to soils ===== ===== 3.D.a.2.c - Other organic fertilizers applied to soils =====
 +This sub category describes Germany’s NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from application of residues from digested energy crops. For details see Rösemann et al. (2021), Chapters 10.2 and 11.3.
  
- +==== Activity data ==== 
-This sub category describes Germany’s NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from application of residues from digested energy crops. For details see Haenel et al. (2020), Chapters 10.2 and 11.3 [1]. +Activity data is the amount of N in residues from anaerobic digestion of energy crops when leaving storage. This amount of N is the N contained in the energy crops when being fed into the digestion process minus the N losses by emissions of N species from the storage of the residues (see 3.I). N losses from pre-storage are negligible and there are no N losses from fermenter (see Rösemann et al. (2021), Chapter 10.2.1).
- +
-**Activity data** +
- +
-Activity data is the amount of N in residues from anaerobic digestion of energy crops when leaving storage. This amount of N is the N contained in the energy crops when being fed into the digestion process minus the N losses by emissions of N species from the storage of the residues (see 3.I). N losses from pre-storage are negligible and there are no N losses from fermenter (see Haenel et al. (2020), Chapter 10.2.1).+
  
 //Table 7: AD for the estimation of NH<sub>3</sub> and NO<sub>x</sub> emissions from application of residues from anaerobic digestion of energy crops// //Table 7: AD for the estimation of NH<sub>3</sub> and NO<sub>x</sub> emissions from application of residues from anaerobic digestion of energy crops//
Line 261: Line 216:
 |                                                         0.05 |   0.62 |   5.40 |  45.76 |  167.41 |  209.32 |  230.52 |  279.13 |  292.42 |  303.81 |  302.16 |  297.19 |  292.86 |  292.86 | |                                                         0.05 |   0.62 |   5.40 |  45.76 |  167.41 |  209.32 |  230.52 |  279.13 |  292.42 |  303.81 |  302.16 |  297.19 |  292.86 |  292.86 |
  
-**Methodology**+==== Methodology ==== 
 +The NH<sub>3</sub> emissions are calculated the same way as the NH<sub>3</sub> emissions from application of animal manure (3.D.a.2.a). The frequencies of application techniques and incorporation times as well as the underlying data sources are provided e. g. in the NIR 2021, Chapter 19.3.2. The amounts of TAN in the residues applied are obtained from the calculations of emissions from the storage of the digested energy crops (3.I).
  
-The NH<sub>3</sub> emissions are calculated the same way as the NH<sub>3</sub> emissions from application of animal manure (3.D.a.2.a). The frequencies of application techniques and incorporation times as well as the underlying data sources are provided e. g. in the NIR 2020 [11], Chapter 19.3.2. The amounts of TAN in the residues applied are obtained from the calculations of emissions from the storage of the digested energy crops (3.I).+For NO<sub>x</sub> emissions from application of residues the Tier 1 approach for the application of inorganic fertilizer as described in EMEP (2019)-3D-11 is used. The inventory calculates NO emissions that are subsequently converted into NO<sub>x</sub> emissions by multiplying with the molar weight ratio 46/30.
  
-For NO<sub>x</sub> emissions from application of residues the Tier 1 approach for the application of inorganic fertilizer as described in EMEP (2016)-3D-11 [10] is used. The inventory calculates NO emissions that are subsequently converted into NO<sub>x</sub> emissions by multiplying with the molar weight ratio 46/30. +==== Emission factors ==== 
- +For NH<sub>3</sub> the emission factors for untreated cattle slurry were adopted, see Rösemann et al. (2021), Chapter 10.2. As the NO<sub>x</sub> method for fertilizer application is used for the calculation of NO<sub>x</sub> emissions from the application of residues, the emission factor for fertilizer application was used (see Rösemann et al. (2021), Chapter 11.1)
-**Emission factors** +
- +
-For NH<sub>3</sub> the emission factors for untreated cattle slurry were adopted, see Haenel et al. (2020), Chapter 10.2, [1]. As the NO<sub>x</sub> method for fertilizer application is used for the calculation of NO<sub>x</sub> emissions from the application of residues, the emission factor for fertilizer application was used (see Haenel et al. (2020), Chapter 11.1 [1])+
  
 Table 8 shows the implied emission factors for NH<sub>3</sub> emissions from application of residues from digested energy crops. Table 8 shows the implied emission factors for NH<sub>3</sub> emissions from application of residues from digested energy crops.
Line 279: Line 232:
 |                                                         0.182 |  0.182 |  0.183 |  0.183 |  0.183 |  0.184 |  0.174 |  0.166 |  0.159 |  0.153 |  0.153 |  0.153 |  0.154 |  0.154 | |                                                         0.182 |  0.182 |  0.183 |  0.183 |  0.183 |  0.184 |  0.174 |  0.166 |  0.159 |  0.153 |  0.153 |  0.153 |  0.154 |  0.154 |
  
-**Trend discussion for Key Sources** +==== Trend discussion for Key Sources ====
 The application of residues from anaerobic digestion of energy crops is a key source for NH<sub>3</sub>. Emissions are dominated by the amounts of N in the substrates fed into the digestion process and to a lesser extent by the increased use of application techniques with lower emission factors. They have become important since about 2005 and have risen sharply until 2013. Since then, they have changed little each year and tend to decrease slightly in the last few years. The latter is mostly due to a small negative trend of the amounts of energy crops digested. The application of residues from anaerobic digestion of energy crops is a key source for NH<sub>3</sub>. Emissions are dominated by the amounts of N in the substrates fed into the digestion process and to a lesser extent by the increased use of application techniques with lower emission factors. They have become important since about 2005 and have risen sharply until 2013. Since then, they have changed little each year and tend to decrease slightly in the last few years. The latter is mostly due to a small negative trend of the amounts of energy crops digested.
  
-**Recalculations** +==== Recalculations ==== 
- +Table REC-4 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions. The only change compared to last year’s submission occurs for 2018, due to the update of the activity data (see [[sector:agriculture:start|main page of the agricultural sector]]list of **recalculation reasons, No 15**, and Rösemann et al. (2021), Chapter 3.5.2.)
-Table REC-4 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions. Differences to last year’s submission are mostly due to the update of activity data (recalculation No 12, see main agricultural page. Smaller effectsand only on NH3 emissionsderive from the modified consideration of the trailing shoe application in the inventory model GAS-EM (No 14). Further details on recalculations are described in Haenel et al. (2020), Chapter 3.5.2.+
  
 //Table REC-4: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021// //Table REC-4: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021//
Line 296: Line 247:
  
  
-**Planned improvements** +==== Planned improvements ====
 No improvements are planned at present. No improvements are planned at present.
  
 =====  3.D.a.3 - Urine and dung deposited by grazing animals ===== =====  3.D.a.3 - Urine and dung deposited by grazing animals =====
 +The calculation of NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from N excretions on pasture is described in Rösemann et al. (2021), Chapter 11.5.
  
- +==== Activity data ====
-The calculation of NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from N excretions on pasture is described in Haenel et al. (2020), Chapter 11.5 [1]. +
- +
-**Activity data** +
 Activity data for NH<sub>3</sub> emissions during grazing is the amount of TAN excreted on pasture while for NO<sub>x</sub> emissions it is the amount of N excreted on pasture.  Activity data for NH<sub>3</sub> emissions during grazing is the amount of TAN excreted on pasture while for NO<sub>x</sub> emissions it is the amount of N excreted on pasture. 
  
Line 321: Line 268:
 | Horses                                            |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 | | Horses                                            |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |
  
-**Methodology** +==== Methodology ====
 NH<sub>3</sub> emissions from grazing are calculated by multiplying the respective animal population (3.B, Table 1) with corresponding N excretions and relative TAN contents (3.B, Table 2) and the fraction of N excreted on pasture (Table 9). The result is multiplied with the animal specific emission factor (Table 10). NO emissions are calculated the same way with the exception that the emission factor is related to N excreted instead of TAN. NH<sub>3</sub> emissions from grazing are calculated by multiplying the respective animal population (3.B, Table 1) with corresponding N excretions and relative TAN contents (3.B, Table 2) and the fraction of N excreted on pasture (Table 9). The result is multiplied with the animal specific emission factor (Table 10). NO emissions are calculated the same way with the exception that the emission factor is related to N excreted instead of TAN.
  
-**Emission Factors** +==== Emission Factors ==== 
- +The emission factors for NH<sub>3</sub> are taken from EMEP (2019)-3B-31, Table 3.9. They relate to the amount of TAN excreted on pasture. Following the intention of EMEP, 2019-3D, Table 3.1, the inventory uses for NO<sub>x</sub> the same emission factor as for the application of inorganic fertilizer (see Table 3). In order to obtain NO<sub>x</sub> emissions (as NO<sub>2</sub>) the NO-N emission factor of 0.12 kg NO-N per kg N excreted is multiplied by 46/14.
-The emission factors for NH<sub>3</sub> are taken from EMEP (2016)-3B-29, Table 3.9 [10]. They relate to the amount of TAN excreted on pasture. Following the intention of EMEP, 2016-3D, Table 3.11 [10], the inventory uses for NOx the same emission factor as for the application of inorganic fertilizer (see Table 3). In order to obtain NO<sub>x</sub> emissions (as NO2) the NO-N emission factor of 0.12 kg NO-N per kg N excreted is multiplied by 46/14.+
  
 //Table 10: Emission factors for emissions of NH<sub>3</sub> and NO from grazing// //Table 10: Emission factors for emissions of NH<sub>3</sub> and NO from grazing//
Line 338: Line 283:
 | All animals       | 0.012 kg NO-N per kg N excreted    | | All animals       | 0.012 kg NO-N per kg N excreted    |
  
-**Trend discussion for Key Sources** +==== Trend discussion for Key Sources ====
 Emissions from urine and dung deposited by grazing animals are no key sources. Emissions from urine and dung deposited by grazing animals are no key sources.
  
-**Recalculations** +==== Recalculations ==== 
- +Table REC-5 shows the effects of recalculations on NH<sub>3</sub> and NOx emissions. Because overall N excretions on pasture are lower than in last year’s submission (predominantly due to the update of cattle models, see [[sector:agriculture:start|main page of the agricultural sector]], list of **recalculation reasons, No 1 through 3**)NO<sub>x</sub> emissions are lower as well. However, although NH<sub>3</sub> emissions could be expected to show the same pattern, this is more than compensated by increased emission factors for cattle grazing (see list of **recalculation reasons, No 5**). Further details on recalculations are described in Rösemann et al. (2021), Chapter 3.5.2.
-Table REC-5 shows the effects of recalculations on NH<sub>3</sub> and NOx emissions. Details on the agricultural recalculations can be found on the main agricultural page. By far the biggest impact has the update of the N-excretion of suckler cows (recalculation No 4, see main agricultural page. Further details on recalculations are described in Haenel et al. (2020), Chapter 3.5.2.+
  
 //Table REC-5: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021// //Table REC-5: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021//
Line 354: Line 297:
 | **NO<sub>x</sub>**                                               | 2020  |   8.65 |   7.03 |   6.84 |   6.06 |   5.80 |   5.67 |   5.65 |   5.73 |   5.80 |   5.85 |   5.80 |   5.75 |   5.66 |        | | **NO<sub>x</sub>**                                               | 2020  |   8.65 |   7.03 |   6.84 |   6.06 |   5.80 |   5.67 |   5.65 |   5.73 |   5.80 |   5.85 |   5.80 |   5.75 |   5.66 |        |
  
-**Planned improvements** +==== Planned improvements ====
 No improvements are planned at present. No improvements are planned at present.
  
 ===== 3.D.c - Farm-level agricultural operations including storage, handling and transport of agricultural products ===== ===== 3.D.c - Farm-level agricultural operations including storage, handling and transport of agricultural products =====
 +In this category Germany reports TSP, PM<sub>10</sub> and PM<sub>2.5</sub> emissions from crop production according to EMEP (2019)-3D-11. For details see Rösemann et al. (2021), Chapter 11.14.
  
- +==== Activity data ====
-In this category Germany reports TSP, PM<sub>10</sub> and PM<sub>2.5</sub> emissions from crop production according to EMEP (2016)-3D-11 [10]. For details see Haenel et al. (2020), Chapter 11.14 [1]. +
- +
-**Activity data** +
 The activity data is the total area of arable and horticultural land. This data is provided by official statistics. The activity data is the total area of arable and horticultural land. This data is provided by official statistics.
  
Line 372: Line 311:
 |                                    11,179 |  10,257 |  10,683 |  10,902 |  11,411 |  11,431 |  11,421 |  11,478 |  11,475 |  11,346 |  11,281 |  11,273 |  11,181 |  11,163 | |                                    11,179 |  10,257 |  10,683 |  10,902 |  11,411 |  11,431 |  11,421 |  11,478 |  11,475 |  11,346 |  11,281 |  11,273 |  11,181 |  11,163 |
  
-**Methodology**+==== Methodology ==== 
 +As the Tier 2 methodology described in EMEP (2019)-3D-17 cannot be used due to lack of input data, the Tier 1 methodology described in EMEP(2019)-3D-11 is used.
  
-As the Tier 2 methodology described in EMEP (2016)-3D-17 [10] cannot be used due to lack of input data, the Tier 1 methodology described in EMEP(2016)-3D-11ff [10] is used. +==== Emission factors ==== 
- +Emission factors given in EMEP (2019)-3D-12 are used. The Guidebook does not indicate whether EFs have considered the condensable component (with or without).
-**Emission factors** +
- +
-Emission factors given in EMEP (2016)-3D-12 [10] are used. The Guidebook does not indicate whether EFs have considered the condensable component (with or without).+
  
 //Table 12: Emission factors for PM emissions from agricultural soils// //Table 12: Emission factors for PM emissions from agricultural soils//
Line 389: Line 326:
  
  
- +==== Trend discussion for Key Sources ====
-**Trend discussion for Key Sources** +
 TSP and  PM<sub>10</sub>  are key sources. Emissions depend only on the areas covered. These are relatively constant, with a very slight decrease over the past 10 years. TSP and  PM<sub>10</sub>  are key sources. Emissions depend only on the areas covered. These are relatively constant, with a very slight decrease over the past 10 years.
  
-**Recalculations** +==== Recalculations ==== 
- +Table REC-6 shows the effects of recalculations on particulate matter emissions. The only changes with respect to last year’s submission occur in the years 2010 through 2012 because of updates of cultivation areas (see [[sector:agriculture:start|main page of the agricultural sector]], list of **recalculation reasons, No 16**). However, due to the data format in Table REC-6, these differences are not visible. Further details on recalculations are described in Rösemann et al. (2021), Chapter 3.5.2.
-Table REC-6 shows the effects of recalculations on particulate matter emissions. All differences to last year submission result from including new crop species (recalculation No 15, see main agricultural page. Further details on recalculations are described in Haenel et al. (2020), Chapter 3.5.2.+
  
 //Table REC-6: Comparison of particle emissions (TSP, PM<sub>10</sub> & PM<sub>2.5</sub>) of the submissions (SUB) 2020 and 2021// //Table REC-6: Comparison of particle emissions (TSP, PM<sub>10</sub> & PM<sub>2.5</sub>) of the submissions (SUB) 2020 and 2021//
Line 410: Line 344:
  
  
-**Planned improvements** +==== Planned improvements ====
 No improvements are planned at present. No improvements are planned at present.
-=====  3.D.e - Cultivated crops ===== 
  
  
-In this category Germany reports NMVOC emissions from crop production according to EMEP (2016)-3D-11 [10]. For details see Haenel et al. (2020), Chapter 11.11, [1]. +=====  3.D.e - Cultivated crops ===== 
- +In this category Germany reports NMVOC emissions from crop production according to EMEP (2019)-3D-16. For details see Rösemann et al. (2021), Chapter 11.12.
-**Activity data**+
  
 +==== Activity data ====
 The activity data is the total area of arable land and grassland. This data is provided by official statistics. The activity data is the total area of arable land and grassland. This data is provided by official statistics.
  
Line 428: Line 360:
  
  
-**Methodology**+==== Methodology ==== 
 +The Tier 2 methodology described in EMEP (2019)-3D-16ff is used.
  
-In EMEP (2016)-3D-15ff [10] the methodology is described how the EMEP Tier 1 EF was estimated. This methodology was adopted to estimate German emissions. It is considered a Tier 2 methodology. +==== Emission Factors ==== 
- +The emission factors for wheat, rye, rape and grass (15°C) given in EMEP (2019)-3D-16, Table 3.3 were used. For all grassland areas the grass (15°C) EF is used, for all other crops except rye and rape the EF of wheat is used. Table 14 shows the implied emission factors for NMVOC emissions from crop production. The implied emission factor is defined as ratio of the total NMVOC emissions from cultivated crops to the total area given by activity data.
-**Emission Factors** +
- +
-The emission factors for wheat, rye, rape and grass (15°C) given in EMEP (2016)-3D-16, Table A3-[10] were used. For all grassland areas the grass (15°C) EF is used, for all other crops except rye and rape the EF of wheat is used. Table 14 shows the implied emission factors for NMVOC emissions from crop production. The implied emission factor is defined as ratio of the total NMVOC emissions from cultivated crops to the total area given by activity data.+
  
 // Table 14: IEF for NMVOC emissions from crop production// // Table 14: IEF for NMVOC emissions from crop production//
Line 441: Line 371:
 |                                                                0.47 |   0.53 |   0.57 |   0.59 |   0.61 |   0.57 |   0.64 |   0.66 |   0.72 |   0.63 |   0.62 |   0.62 |   0.50 |   0.55 | |                                                                0.47 |   0.53 |   0.57 |   0.59 |   0.61 |   0.57 |   0.64 |   0.66 |   0.72 |   0.63 |   0.62 |   0.62 |   0.50 |   0.55 |
  
-** Recalculations** 
  
-Table REC-7 shows the effects of recalculations on NMVOC emissions. All differences to last year’s submission result from including new crop species (recalculation No 15, see main agricultural page. Further details on recalculations are described in Haenel et al. (2020), Chapter 3.5.2.+==== Trend discussion for Key Sources ==== 
 +Emissions from urine and dung deposited by grazing animals are no key sources. 
 + 
 +==== Recalculations ==== 
 +Table REC-7 shows the effects of recalculations on NMVOC emissions. The only changes with respect to last year’s submission occur in the years 1999 (not shown in Table REC-7) and 2010 through 2012 because of updates of yields in 1999 and 2010 and of cultivation areas 2010 through 2012 (see [[sector:agriculture:start|main page of the agricultural sector]], list of **recalculation reasons, No 16**). However, due to the data format in Table Table REC-6, these differences are not visible. Further details on recalculations are described in Rösemann et al. (2021), Chapter 3.5.2.
  
  
Line 454: Line 387:
  
  
-**Planned improvements**  +==== Planned improvements ====
- +
 No improvements are planned at present. No improvements are planned at present.
  
-**Uncertainty** +==== Uncertainty ====
 Details will be described in [[general:uncertainty_evaluation:start|chapter 1.7]]. Details will be described in [[general:uncertainty_evaluation:start|chapter 1.7]].