meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:agriculture:manure_management:start [2021/02/11 14:17] doeringsector:agriculture:manure_management:start [2022/09/15 13:44] (current) – [Country specifics] Fix link hausmann
Line 3: Line 3:
 ===== Short description ===== ===== Short description =====
  
-^ NFR-Code                                         ^ Name of Category        ^ Method                                                                                           ^ AD      ^ EF                                                                                          ^ Key Category <sup>1</sup>                    ^ State of reporting                                              ^ +^ NFR-Code                                         ^ Name of Category        ^ Method                                                                                           ^ AD      ^ EF                                                                                          ^ State of reporting                                              ^ 
-| **3.B    **                                      | ** Manure Management**  | **see sub-category details**                                                                                                                                                                         |                                              |                                                                 | +| **3.B    **                                      | ** Manure Management**  | **see sub-category details**                                                                                                                                                                           |||                                                                 | 
-| **consisting of / including source categories**                                                                                                                                                                                                                                                                                                                                                  ||||||| +| **consisting of / including source categories**                                                                                                                                                                                                                                                                                                    |||||| 
-| 3.B.1.a & 3.B.1.b                                | Cattle                  | T3 (NH<sub>3</sub> ), T2 (NO<sub>x</sub> , TSP, PM<sub>10</sub> , PM<sub>2.5</sub>, NMVOC)       | NS, RS  | CS (NH<sub>3</sub> , NO<sub>x</sub> ), D (TSP, PM<sub>10</sub> , PM<sub>2.5</sub> , NMVOC)  | L & T: NH<sub>3</sub>  (for 3.B.1.b), NMVOC  | L: NH<sub>3</sub>  (for 3.B.1.a)                                | +| 3.B.1.a & 3.B.1.b                                | Cattle                  | T3 (NH<sub>3</sub> ), T2 (NO<sub>x</sub> , TSP, PM<sub>10</sub> , PM<sub>2.5</sub>, NMVOC)       | NS, RS  | CS (NH<sub>3</sub> , NO<sub>x</sub> ), D (TSP, PM<sub>10</sub> , PM<sub>2.5</sub> , NMVOC)  | L: NH<sub>3</sub>  (for 3.B.1.a)                                | 
-| 3.B.2, 3.B.4.d, 3.B.4.e                          | Sheep, Goats, Horses    | T2 (NH<sub>3</sub> , NO<sub>x</sub> , TSP, PM<sub>10</sub> , PM<sub>2.5</sub>), T1 (NMVOC)       | NS, RS  | CS (NH<sub>3</sub> ,NO<sub>x</sub> ), D (TSP, PM<sub>10</sub> , PM<sub>2.5</sub> , NMVOC)   | no key category                              |                                                                 | +| 3.B.2, 3.B.4.d, 3.B.4.e                          | Sheep, Goats, Horses    | T2 (NH<sub>3</sub> , NO<sub>x</sub> , TSP, PM<sub>10</sub> , PM<sub>2.5</sub>), T1 (NMVOC)       | NS, RS  | CS (NH<sub>3</sub> ,NO<sub>x</sub> ), D (TSP, PM<sub>10</sub> , PM<sub>2.5</sub> , NMVOC)                                                                   | 
-| 3.B.3                                            | Swine                   | T3 (NH<sub>3</sub> ), T2 (NO<sub>x</sub> , TSP, PM<sub>10</sub> , PM<sub>2.5</sub>), T1 (NMVOC)  | NS, RS  | CS (NH<sub>3</sub> , NO<sub>x</sub> ), D (TSP, PM<sub>10</sub> , PM<sub>2.5</sub> , NMVOC)  | L & T: NH<sub>3</sub> , TSP                  |                                                                 | +| 3.B.3                                            | Swine                   | T3 (NH<sub>3</sub> ), T2 (NO<sub>x</sub> , TSP, PM<sub>10</sub> , PM<sub>2.5</sub>), T1 (NMVOC)  | NS, RS  | CS (NH<sub>3</sub> , NO<sub>x</sub> ), D (TSP, PM<sub>10</sub> , PM<sub>2.5</sub> , NMVOC)  |                                                                 | 
-| 3.B.4.a                                          | Buffalo                                                                                                                  |                                                                                                     |                                              | NO, from 1990 until 1995, since 1996 IE, considered in 3.B.1.b +| 3.B.4.a                                          | Buffalo                                                                                                                  |                                                                                                     | NO, from 1990 until 1995, since 1996 IE, considered in 3.B.1.b 
-| 3.B.4.f                                          | Mules and asses                                                                                                          |                                                                                                     |                                              | IE, considered in 3.B.4.e                                       | +| 3.B.4.f                                          | Mules and asses                                                                                                          |                                                                                                     | IE, considered in 3.B.4.e                                       | 
-| 3.B.4.g i-iv                                     | Poultry                 | T2 (NH<sub>3</sub> , NO<sub>x</sub> , TSP, PM<sub>10</sub> , PM<sub>2.5</sub>), T1 (NMVOC)       | NS, RS  | CS (NH<sub>3</sub> , NO<sub>x</sub> ), D (TSP, PM<sub>10</sub> , PM<sub>2.5</sub> , NMVOC)  | L: TSP (for 3.B.4.g i)                       | T: NH<sub>3</sub>  (for 3.B.4.g iii)                            | +| 3.B.4.g i-iv                                     | Poultry                 | T2 (NH<sub>3</sub> , NO<sub>x</sub> , TSP, PM<sub>10</sub> , PM<sub>2.5</sub>), T1 (NMVOC)       | NS, RS  | CS (NH<sub>3</sub> , NO<sub>x</sub> ), D (TSP, PM<sub>10</sub> , PM<sub>2.5</sub> , NMVOC)  | T: NH<sub>3</sub>  (for 3.B.4.g iii)                            | 
-| 3.B.4.h                                          | Other animals                                                                                                            |                                                                                                     |                                              | NE                                                              |+| 3.B.4.h                                          | Other animals                                                                                                            |                                                                                                     | NE                                                              |
  
-<hidden> +^  Key Category  ^  SO₂      NOₓ  ^  NH₃  ^  NMVOC  ^  CO    BC    Pb    Hg    Cd    Diox  ^  PAH  ^  HCB  ^  TSP  ^  PM₁₀  ^  PM₂ ₅  ^ 
- +| 3.B.1.a          -          |  -/-  |  L/T  |  L/-    |  -    |  -    |  -    |  -    |  -    |  -      -    |  -    |  -/-  |  -/-    -/-    | 
----- +| 3.B.1.b         |           |  -/  L/T  |  L/    -    |  -    |  -    |  -    |  -    |  -      -    |  -    |  -/-  |  -/-    -/-    | 
-Legend +| 3.B.2            -          |  -/-  |  -/-  |  -/-    |  -    |  -    |  -    |  -    |  -    |  -      -    |  -    |  -/-  |  -/-    -/-    | 
-= key source by Trend / L = key source by Level +| 3.B.3            -          |  -/-  |  L/  -/-    |  -    |  -    |  -    |  -    |  -    |  -      -    |  -    |  L/ |  -/  |  -/-    | 
- +| 3.B.4.d          -          |  -/-  |  -/-  |  -/-    |  -    |  -    |  -    |  -    |  -    |  -      -    |  -    |  -/-  |  -/-    -/-    | 
----- +3.B.4.e          -          |  -/-  |  -/-   -/-    |  -    |  -    |  -    |  -    |  -    |  -      -    |  -    |  -/-  |  -/-    -/-    | 
- +| 3.B.4.g.i        -          |  -/-  |  -/-  |  -/-    |  -    |  -    |  -    |  -    |  -    |  -      -    |  -    |  L/-  |  -/-    -/-    | 
-//Methods//  +| 3.B.4.g.ii      |           |  -/ |  -/-  |  -/-    |  -    |  -    |  -    |  -    |  -    |  -      -    |  -    |  -/-  |  -/-    -/-    | 
-D: Default +| 3.B.4.g.iii      -          |  -/-  |  -/-   -/-    |  -    |  -    |  -    |  -    |  -    |  -      -    |  -    |  -/-  |  -/-    -/-    | 
-RA: Reference Approach +| 3.B.4.g.iv      |           |  -/  -/-  |  -/-    |  -    |  -    |  -    |  -    |  -    |  -      -    |  -    |  -/-  |  -/-    -/   |
-T1: Tier 1 Simple Methodology * +
-T2: Tier 2* +
-T3: Tier 3 / Detailed Methodology * +
-C: CORINAIR +
-CS: Country Specific +
-M: Model +
-as described in the EMEP/CORINAIR Emission Inventory Guidebook 2019, in the group specific chapters.  +
- +
----- +
- +
-//AD:Data Source for Activity Data // +
-NS: National Statistics +
-RS: Regional Statistics +
-IS: International Statistics +
-PS: Plant Specific data +
-AS: Associations, business organisations +
-Q: specific questionnaires, surveys +
- +
-----+
  
-//EF - Emission Factors//  + {{page>general:Misc:LegendEIT:start}} 
-D: Default (EMEP Guidebook) +\\
-C: Confidential +
-CS: Country Specific +
-PS: Plant Specific data</hidden>+
  
  
Line 60: Line 38:
  
  
-NO<sub>x</sub> emissions from category 3.B (manure management) contribute only 1.2 % (~ 1.4 kt) to the total agricultural NO<sub>x</sub> emissions. They are calculated proportionally to N<sub>2</sub>O emissions, see Rösemann et al. (2021) ((Rösemann C., Haenel H-D., Vos C., Dämmgen U., Döring U., Wulf S., Eurich-Menden B., Freibauer A., Döhler H., Schreiner C., Osterburg B. & Fuß, R. (2021): Calculations of gaseous and particulate emissions from German Agriculture 1990 –2019. Report on methods and data (RMD), Submission 2021. Thünen Report (in preparation). https://www.thuenen.de/de/ak/arbeitsbereiche/emissionsinventare)).+NO<sub>x</sub> emissions from category 3.B (manure management) contribute only 1.2 % (~ 1.4 kt) to the total agricultural NO<sub>x</sub> emissions. They are calculated proportionally to N<sub>2</sub>O emissions, see Rösemann et al. (2021) ((Rösemann C., Haenel H-D., Vos C., Dämmgen U., Döring U., Wulf S., Eurich-Menden B., Freibauer A., Döhler H., Schreiner C., Osterburg B. & Fuß, R. (2021): Calculations of gaseous and particulate emissions from German Agriculture 1990 –2019. Report on methods and data (RMD), Submission 2021. Thünen Report 84. https://www.thuenen.de/de/fachinstitute/agrarklimaschutz/arbeitsbereiche/emissionsinventare)).
  
 NMVOC emissions from category 3.B (manure management) contributed 97.2 % (295.8 kt) from total agricultural NMVOC emissions (304.4 kt). NMVOC emissions from category 3.B (manure management) contributed 97.2 % (295.8 kt) from total agricultural NMVOC emissions (304.4 kt).
Line 66: Line 44:
 In 2019, manure management contributed, respectively, 71.1 % (42.9 kt), 42.7 % (13.0 kt) and 84.8 % (3.7 kt) to the total agricultural TSP, PM<sub>10</sub> and PM<sub>2.5</sub> emissions (TSP: 60.3 kt, PM<sub>10</sub>: 30.4 kt, PM<sub>2.5</sub>: 4.4 kt, respectively). In 2019, manure management contributed, respectively, 71.1 % (42.9 kt), 42.7 % (13.0 kt) and 84.8 % (3.7 kt) to the total agricultural TSP, PM<sub>10</sub> and PM<sub>2.5</sub> emissions (TSP: 60.3 kt, PM<sub>10</sub>: 30.4 kt, PM<sub>2.5</sub>: 4.4 kt, respectively).
  
-**Activity data for all pollutants**+==== Activity data for all pollutants ====
  
 The Federal Statistical Agency and the Statistical Agencies of the federal states carry out surveys in order to collect, along with other data, the head counts of animals. The results of these surveys are used for emission calculations, for details see Rösemann et al, 2021, Chapter 3.4.2. The Federal Statistical Agency and the Statistical Agencies of the federal states carry out surveys in order to collect, along with other data, the head counts of animals. The results of these surveys are used for emission calculations, for details see Rösemann et al, 2021, Chapter 3.4.2.
Line 97: Line 75:
 ---- ----
  
- +==== Additional data ====
- +
- +
- +
-**Additional data** +
 Emission calculations in accordance with a Tier 2 or Tier 3 method require data on animal performance (animal weight, weight gain, milk yield, milk protein content, milk fat content, numbers of births, numbers of eggs and weights of eggs) and on the relevant feeding details (phase feeding, feed components, protein and energy content, digestibility and feed efficiency). To subdivide officially recorded total numbers of turkeys into roosters and hens, the respective population percentages need to be known. Details on data requirements for the modelling of emissions from livestock husbandry in the German inventory can be found in Rösemann et al. (2021), Chapters 4 to 8. Emission calculations in accordance with a Tier 2 or Tier 3 method require data on animal performance (animal weight, weight gain, milk yield, milk protein content, milk fat content, numbers of births, numbers of eggs and weights of eggs) and on the relevant feeding details (phase feeding, feed components, protein and energy content, digestibility and feed efficiency). To subdivide officially recorded total numbers of turkeys into roosters and hens, the respective population percentages need to be known. Details on data requirements for the modelling of emissions from livestock husbandry in the German inventory can be found in Rösemann et al. (2021), Chapters 4 to 8.
  
Line 115: Line 88:
 For a description of the RAUMIS data, the data from official surveys and additional data from other sources see Rösemann et al. (2021), Chapter 3.4. Time series of frequency distributions of housing systems, storage systems and application techniques as well as the corresponding emission factors are provided in NIR 2021,Chapter 19.3.2. For a description of the RAUMIS data, the data from official surveys and additional data from other sources see Rösemann et al. (2021), Chapter 3.4. Time series of frequency distributions of housing systems, storage systems and application techniques as well as the corresponding emission factors are provided in NIR 2021,Chapter 19.3.2.
  
 +=====  NH₃ and NOₓ =====
 +==== Method ====
  
 +=== N in manure management ===
  
- +== N excretion ==
- +
- +
-=====  NH3 and NOx ===== +
- +
- +
-==== Methodology ==== +
- +
-**N in manure management** +
-**N excretion** +
 In order to determine NH<sub>3</sub> and NO<sub>x</sub> emissions from manure management of a specific animal category, the individual N excretion rate must be known as well as, for NH<sub>3</sub>, the TAN content of the N excretions. Default excretion rates are provided by IPCC Guidelines and default TAN contents can be found in the EMEP Guidebook, 2019((EMEP/EEA air pollutant emission inventory guidebook – 2019, EEA Report No 13/2019, https://www.eea.europa.eu/publications/emep-eea-guidebook-2019.)). However, the German agricultural emission inventory uses N mass balances to calculate the N excretions and the TAN contents of almost all animal categories to be reported. N mass balance calculations (see below) consider N intake with feed, N retention due to growth, N contained in milk and eggs, and N in offspring. Table 2 presents national means of N excretions and TAN contents. For methodological details and mass balance input data see In order to determine NH<sub>3</sub> and NO<sub>x</sub> emissions from manure management of a specific animal category, the individual N excretion rate must be known as well as, for NH<sub>3</sub>, the TAN content of the N excretions. Default excretion rates are provided by IPCC Guidelines and default TAN contents can be found in the EMEP Guidebook, 2019((EMEP/EEA air pollutant emission inventory guidebook – 2019, EEA Report No 13/2019, https://www.eea.europa.eu/publications/emep-eea-guidebook-2019.)). However, the German agricultural emission inventory uses N mass balances to calculate the N excretions and the TAN contents of almost all animal categories to be reported. N mass balance calculations (see below) consider N intake with feed, N retention due to growth, N contained in milk and eggs, and N in offspring. Table 2 presents national means of N excretions and TAN contents. For methodological details and mass balance input data see
 Rösemann et al. (2021), Chapter 3.3.4.3 as well as Chapters 4 to 8. Rösemann et al. (2021), Chapter 3.3.4.3 as well as Chapters 4 to 8.
Line 161: Line 127:
 ^ geese                                      |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 | ^ geese                                      |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |   70.0 |
  
-**N mass flow and emission assessment** +== N mass flow and emission assessment == 
- +The calculation of the emissions of NH<sub>3</sub>, N<sub>2</sub>O, NO<sub>x</sub> and N<sub>2</sub> from German animal husbandry is based on the so-called N mass flow approach (e. g. Dämmgen and Hutchings, 2008 ((Dämmgen U., Hutchings N.J. (2008): Emissions of gaseous nitrogen species from manure management - a new approach. Environmental Pollution 154, 488-497.))).
-The calculation of the emissions of NH<sub>3</sub>, N<sub>2</sub>O, NO<sub>x</sub> and N2 from German animal husbandry is based on the so-called N mass flow approach (e. g. Dämmgen and Hutchings, 2008 ((Dämmgen U., Hutchings N.J. (2008): Emissions of gaseous nitrogen species from manure management - a new approach. Environmental Pollution 154, 488-497.))).+
 This approach differentiates between N excreted with faeces (organic nitrogen Norg, i. e. undigested feed N) and urine (total ammoniacal nitrogen TAN, i. e. fraction of feed N metabolized). The N flow within the manure management system is treated as depicted in the figure below. This method reconciles the requirements of both the Atmospheric Emission Inventory Guidebook for NH<sub>3</sub> emissions (EMEP, 2019), and the IPCC guidelines for greenhouse gas emissions (IPCC (2006)((IPCC – Intergovernmental Panel on Climate Change (2006): IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4 Agriculture, Forestry and Other Land Use.)). Reidy et al. (2008),((Reidy B. et al. (2008): Reidy B., Dämmgen U., Döhler H., Eurich-Menden B., Hutchings N.J., Luesink H.H., Menzi H., Misselbrook T.H., Monteny G.-J., Webb J. (2008): Comparison of models used for the calculation of national NH3 emission inventories from agriculture: liquid manure systems. Atmospheric Environment 42, 3452-3467.)), showed for several European countries (Germany, the Netherlands, Switzerland, United Kingdom) that their N-flow based inventory models yielded, in spite of national peculiarities, comparable results as long as standardised data sets for the input variables were used. This approach differentiates between N excreted with faeces (organic nitrogen Norg, i. e. undigested feed N) and urine (total ammoniacal nitrogen TAN, i. e. fraction of feed N metabolized). The N flow within the manure management system is treated as depicted in the figure below. This method reconciles the requirements of both the Atmospheric Emission Inventory Guidebook for NH<sub>3</sub> emissions (EMEP, 2019), and the IPCC guidelines for greenhouse gas emissions (IPCC (2006)((IPCC – Intergovernmental Panel on Climate Change (2006): IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4 Agriculture, Forestry and Other Land Use.)). Reidy et al. (2008),((Reidy B. et al. (2008): Reidy B., Dämmgen U., Döhler H., Eurich-Menden B., Hutchings N.J., Luesink H.H., Menzi H., Misselbrook T.H., Monteny G.-J., Webb J. (2008): Comparison of models used for the calculation of national NH3 emission inventories from agriculture: liquid manure systems. Atmospheric Environment 42, 3452-3467.)), showed for several European countries (Germany, the Netherlands, Switzerland, United Kingdom) that their N-flow based inventory models yielded, in spite of national peculiarities, comparable results as long as standardised data sets for the input variables were used.
  
Line 172: Line 137:
 //General scheme of N flows in animal husbandry// //General scheme of N flows in animal husbandry//
  
-//m: mass from which emissions may occur. Narrow broken arrows: TAN (total ammoniacal nitrogen); narrow continuous arrows: organic N. The horizontal arrows denote the process of immobilisation in systems with bedding occurring in the house, and the process of mineralisation during storage, which occurs in any case. Broad arrows denote N-emissions assigned to manure management (E<sub>yard</sub> NH<sub>3</sub> emissions from yards; E<sub>house</sub> NH<sub>3</sub> emissions from house; E<sub>storage</sub> NH<sub>3</sub>, N<sub>2</sub>O, NO<sub>x</sub> and N<sub>2</sub> emissions from storage; E<sub>applic</sub> NH<sub>3</sub> emissions during and after spreading; E<sub>graz</sub> NH<sub>3</sub>, N<sub>2</sub>O, NO<sub>x</sub> and N<sub>2</sub> emissions during and after grazing; E<sub>soil</<ub> N<sub>2</sub>O, NO<sub>x</sub> and N<sub>2</sub> emissions from soil resulting from manure input).//+//m: mass from which emissions may occur. Narrow broken arrows: TAN (total ammoniacal nitrogen); narrow continuous arrows: organic N. The horizontal arrows denote the process of immobilisation in systems with bedding occurring in the house, and the process of mineralisation during storage, which occurs in any case. Broad arrows denote N-emissions assigned to manure management (E<sub>yard</sub> NH<sub>3</sub> emissions from yards; E<sub>house</sub> NH<sub>3</sub> emissions from house; E<sub>storage</sub> NH<sub>3</sub>, N<sub>2</sub>O, NO<sub>x</sub> and N<sub>2</sub> emissions from storage; E<sub>applic</sub> NH<sub>3</sub> emissions during and after spreading; E<sub>graz</sub> NH<sub>3</sub>, N<sub>2</sub>O, NO<sub>x</sub> and N<sub>2</sub> emissions during and after grazing; E<sub>soil</sub> N<sub>2</sub>O, NO<sub>x</sub> and N<sub>2</sub> emissions from soil resulting from manure input).//
  
-The figure allows tracing of the pathways of the two N fractions after excretion. The various locations where excretion may take place are considered. The partial mass flows down to the input to soil are depicted. During storage Norg can be transformed into TAN and vice versa. Both, the way and the amount of such transformations may be influenced by manure treatment processes like, e. g., anaerobic digestion where a considerable fraction of Norg is mineralized to TAN. For details see Rösemann et al. (2021), Chapters 3.3.4.3 and 3.3.4.4 [1]. Wherever NH<sub>3</sub> is emitted, its formation is related to the amount of the TAN present. For poultry the excretion of uric acid nitrogen (UAN) should be used instead of TAN (see Dämmgen and Erisman, 2005 ((Dämmgen U., Erisman J.W. (2005): Emission, transmission, deposition and environmental effects of ammonia from agricultural sources. In: Kuczyński T., Dämmgen U., Webb J., Myczko (eds) Emissions from European Agriculture. Wageningen Academic Publishers, Wageningen. pp 97-112.))). In line with EMEP (2019), it is assumed that UAN excreted can be considered TAN. N<sub>2</sub>O emissions are related to the total amount of N available (Norg + TAN). NO<sub>x</sub> emissions (i. e. NO emissions) are calculated proportionally to the N<sub>2</sub>O emissions, see section 'Emission factors'. Note that the N<sub>2</sub>O, NO<sub>x</sub> and N2 emissions from the various storage systems include the respective emissions from the related housing systems. +The figure allows tracing of the pathways of the two N fractions after excretion. The various locations where excretion may take place are considered. The partial mass flows down to the input to soil are depicted. During storage Norg can be transformed into TAN and vice versa. Both, the way and the amount of such transformations may be influenced by manure treatment processes like, e. g., anaerobic digestion where a considerable fraction of Norg is mineralized to TAN. For details see Rösemann et al. (2021), Chapters 3.3.4.3 and 3.3.4.4. Wherever NH<sub>3</sub> is emitted, its formation is related to the amount of the TAN present. For poultry the excretion of uric acid nitrogen (UAN) should be used instead of TAN (see Dämmgen and Erisman, 2005 ((Dämmgen U., Erisman J.W. (2005): Emission, transmission, deposition and environmental effects of ammonia from agricultural sources. In: Kuczyński T., Dämmgen U., Webb J., Myczko (eds) Emissions from European Agriculture. Wageningen Academic Publishers, Wageningen. pp 97-112.))). In line with EMEP (2019), it is assumed that UAN excreted can be considered TAN. N<sub>2</sub>O emissions are related to the total amount of N available (Norg + TAN). NO<sub>x</sub> emissions (i. e. NO emissions) are calculated proportionally to the N<sub>2</sub>O emissions, see section 'Emission factors'. Note that the N<sub>2</sub>O, NO<sub>x</sub> and N2 emissions from the various storage systems include the respective emissions from the related housing systems.
- +
-**Air scrubber systems in swine and poultry housings**+
  
 +== Air scrubber systems in swine and poultry housings ==
 For pig and poultry production the inventory considers the effect of air scrubbing. Data on frequencies of air scrubbing facilities and the removal efficiency are provided by KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft / Association for Technology and Structures in Agriculture). The average removal efficiency of NH<sub>3</sub> is 80 % for swine and 70 % for poultry, while for TSP and PM<sub>10</sub> the rates are set to 90 % and for PM<sub>2.5</sub> to 70 % for both animal categories. For swine two types of air scrubbers are distinguished: certified systems that remove both NH<sub>3</sub> and particles, and non-certified systems that remove only particles. For pig and poultry production the inventory considers the effect of air scrubbing. Data on frequencies of air scrubbing facilities and the removal efficiency are provided by KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft / Association for Technology and Structures in Agriculture). The average removal efficiency of NH<sub>3</sub> is 80 % for swine and 70 % for poultry, while for TSP and PM<sub>10</sub> the rates are set to 90 % and for PM<sub>2.5</sub> to 70 % for both animal categories. For swine two types of air scrubbers are distinguished: certified systems that remove both NH<sub>3</sub> and particles, and non-certified systems that remove only particles.
  
Line 183: Line 147:
 The amounts of NH<sub>3</sub>-N removed by air scrubbing are completely added to the pools of total N and TAN for landspreading. For details see Rösemann et al. (2021), Chapter 3.3.4.3.3. The amounts of NH<sub>3</sub>-N removed by air scrubbing are completely added to the pools of total N and TAN for landspreading. For details see Rösemann et al. (2021), Chapter 3.3.4.3.3.
  
-**Anaerobic digestion of manure** +== Anaerobic digestion of manure ==
 According to IPCC (2006), anaerobic digestion of manure is treated like a particular storage type that, however, comprises three sub-compartments (pre-storage, fermenter and storage of digestates). For details see Rösemann et al. (2021), Chapters 3.3.4.4 and 3.4.4.2. The resulting digestates are considered as liquid. Two different types of digestates storage systems are considered: gastight storage and open tank. For the open tank formation of a natural crust because of the usual co-fermentation of energy crops is taken into account. Furthermore, the modelling of anaerobic digestion and spreading of the digestates takes into account that the amount of TAN in the digestates is higher than in untreated slurry and that the frequencies of spreading techniques differ from those for untreated slurry. According to IPCC (2006), anaerobic digestion of manure is treated like a particular storage type that, however, comprises three sub-compartments (pre-storage, fermenter and storage of digestates). For details see Rösemann et al. (2021), Chapters 3.3.4.4 and 3.4.4.2. The resulting digestates are considered as liquid. Two different types of digestates storage systems are considered: gastight storage and open tank. For the open tank formation of a natural crust because of the usual co-fermentation of energy crops is taken into account. Furthermore, the modelling of anaerobic digestion and spreading of the digestates takes into account that the amount of TAN in the digestates is higher than in untreated slurry and that the frequencies of spreading techniques differ from those for untreated slurry.
  
 NH<sub>3</sub> and NO emissions occur from pre-storage of solid manure, from non-gastight storage of digestates and from landspreading of digestates (NH<sub>3</sub> emissions and NO emissions from landspreading of digested manure are reported in 3.Da.2.a). There are no such emissions from pre-storage of slurry, from the fermenter and from gastight storage of digestates. Note that NH<sub>3</sub> and NO emissions calculated with respect to the digestion of animal manures do not comprise the contributions by co-digested energy crops. The latter are dealt with separately in 3.D.a.2.c and 3.I. NH<sub>3</sub> and NO emissions occur from pre-storage of solid manure, from non-gastight storage of digestates and from landspreading of digestates (NH<sub>3</sub> emissions and NO emissions from landspreading of digested manure are reported in 3.Da.2.a). There are no such emissions from pre-storage of slurry, from the fermenter and from gastight storage of digestates. Note that NH<sub>3</sub> and NO emissions calculated with respect to the digestion of animal manures do not comprise the contributions by co-digested energy crops. The latter are dealt with separately in 3.D.a.2.c and 3.I.
  
-**Emission Factors** +== Emission Factors ==
 Application of the N mass flow approach requires detailed emission factors for NH<sub>3</sub>, N<sub>2</sub>O, NO<sub>x</sub> and N<sub>2</sub> describing the emissions from the various housing and storage systems. Application of the N mass flow approach requires detailed emission factors for NH<sub>3</sub>, N<sub>2</sub>O, NO<sub>x</sub> and N<sub>2</sub> describing the emissions from the various housing and storage systems.
  
Line 204: Line 166:
 //Table 3: IEF for NH<sub>3</sub> & NO<sub>x</sub> from manure management// //Table 3: IEF for NH<sub>3</sub> & NO<sub>x</sub> from manure management//
 |                                  ^  1990    ^  1995    ^  2000    ^  2005    ^  2010    ^  2011    ^  2012    ^  2013    ^  2014    ^  2015    ^  2016    ^  2017    ^  2018    ^  2019    ^ |                                  ^  1990    ^  1995    ^  2000    ^  2005    ^  2010    ^  2011    ^  2012    ^  2013    ^  2014    ^  2015    ^  2016    ^  2017    ^  2018    ^  2019    ^
-^  IEF in kg NH3 per animal place                                                                                                                                              ^^^^^^^^^^^^^^^+^  IEF in kg NH₃ per animal place                                                                                                                                              |||||||||||||||
 ^ dairy cattle                          9.8 |     10.4 |     11.1 |     12.1 |     12.6 |     12.5 |     12.4 |     12.3 |     12.2 |     12.3 |     12.4 |     12.3 |     12.4 |     12.6 | ^ dairy cattle                          9.8 |     10.4 |     11.1 |     12.1 |     12.6 |     12.5 |     12.4 |     12.3 |     12.2 |     12.3 |     12.4 |     12.3 |     12.4 |     12.6 |
 ^ other cattle                          7.0 |      7.4 |      7.7 |      8.2 |      8.4 |      8.4 |      8.3 |      8.3 |      8.3 |      8.4 |      8.4 |      8.4 |      8.4 |      8.5 | ^ other cattle                          7.0 |      7.4 |      7.7 |      8.2 |      8.4 |      8.4 |      8.3 |      8.3 |      8.3 |      8.4 |      8.4 |      8.4 |      8.4 |      8.5 |
Line 217: Line 179:
 ^ ducks                            |    0.193 |    0.193 |    0.193 |    0.192 |    0.190 |    0.189 |    0.188 |    0.187 |    0.186 |    0.186 |    0.186 |    0.186 |    0.186 |    0.186 | ^ ducks                            |    0.193 |    0.193 |    0.193 |    0.192 |    0.190 |    0.189 |    0.188 |    0.187 |    0.186 |    0.186 |    0.186 |    0.186 |    0.186 |    0.186 |
 ^ geese                            |    0.301 |    0.301 |    0.301 |    0.300 |    0.298 |    0.298 |    0.298 |    0.297 |    0.297 |    0.297 |    0.297 |    0.297 |    0.297 |    0.297 | ^ geese                            |    0.301 |    0.301 |    0.301 |    0.300 |    0.298 |    0.298 |    0.298 |    0.297 |    0.297 |    0.297 |    0.297 |    0.297 |    0.297 |    0.297 |
-^  IEF in kg NOx per animal place                                                                                                                                              ^^^^^^^^^^^^^^^+^  IEF in kg NOₓ per animal place                                                                                                                                              |||||||||||||||
 ^ dairy cattle                        0.106 |    0.114 |    0.125 |    0.130 |    0.125 |    0.122 |    0.118 |    0.115 |    0.115 |    0.116 |    0.117 |    0.117 |    0.119 |    0.122 | ^ dairy cattle                        0.106 |    0.114 |    0.125 |    0.130 |    0.125 |    0.122 |    0.118 |    0.115 |    0.115 |    0.116 |    0.117 |    0.117 |    0.119 |    0.122 |
 ^ other cattle                        0.053 |    0.058 |    0.060 |    0.064 |    0.065 |    0.064 |    0.064 |    0.063 |    0.063 |    0.063 |    0.063 |    0.063 |    0.063 |    0.064 | ^ other cattle                        0.053 |    0.058 |    0.060 |    0.064 |    0.065 |    0.064 |    0.064 |    0.063 |    0.063 |    0.063 |    0.063 |    0.063 |    0.063 |    0.064 |
Line 231: Line 193:
 ^ geese                            |  0.00018 |  0.00018 |  0.00019 |  0.00021 |  0.00023 |  0.00023 |  0.00021 |  0.00022 |  0.00021 |  0.00022 |  0.00022 |  0.00021 |  0.00021 |  0.00021 | ^ geese                            |  0.00018 |  0.00018 |  0.00019 |  0.00021 |  0.00023 |  0.00023 |  0.00021 |  0.00022 |  0.00021 |  0.00022 |  0.00022 |  0.00021 |  0.00021 |  0.00021 |
  
-**Trend discussion for Key Sources** +== Trend discussion for Key Sources ==
 Dairy cattle, other cattle and swine are key sources of NH<sub>3</sub> emissions from manure management. The time series of the total NH<sub>3</sub> emissions from all three categories are predominantly driven by the development of the animal numbers, see Table 1. This also holds for the negative trend of total emissions in the last few years. However, the effect of decreasing animal numbers is partly compensated by the continuously increasing animal performance. This leads to increasing N excretions per animal, see Table 2, which, in principle, is reflected by increasing implied emission factors, see Table 3. For swine, as of 2012, the IEF is almost constant over time due to the use of air scrubbing systems that, to a high degree, remove NH<sub>3</sub> from the housings. Dairy cattle, other cattle and swine are key sources of NH<sub>3</sub> emissions from manure management. The time series of the total NH<sub>3</sub> emissions from all three categories are predominantly driven by the development of the animal numbers, see Table 1. This also holds for the negative trend of total emissions in the last few years. However, the effect of decreasing animal numbers is partly compensated by the continuously increasing animal performance. This leads to increasing N excretions per animal, see Table 2, which, in principle, is reflected by increasing implied emission factors, see Table 3. For swine, as of 2012, the IEF is almost constant over time due to the use of air scrubbing systems that, to a high degree, remove NH<sub>3</sub> from the housings.
  
 For NO<sub>x</sub> there are no key categories. For NO<sub>x</sub> there are no key categories.
  
-**Recalculations** +== Recalculations ==
 All time series of the emission inventory have completely been recalculated since 1990. Tables REC-1 and REC-2 compare the recalculated time series for NH<sub>3</sub>  and NO<sub>x</sub> from 3B with the respective data of last year’s submission. The total emissions of NH<sub>3</sub>  and NO<sub>x</sub> are significantly lower than those of submission 2020.  All time series of the emission inventory have completely been recalculated since 1990. Tables REC-1 and REC-2 compare the recalculated time series for NH<sub>3</sub>  and NO<sub>x</sub> from 3B with the respective data of last year’s submission. The total emissions of NH<sub>3</sub>  and NO<sub>x</sub> are significantly lower than those of submission 2020. 
 This is predominantly due to the update of the models of dairy cows, calves, heifers and male beef cattle, see main page of the agricultural sector ([[sector:agriculture:start|Chapter 5 - NFR 3 - Agriculture (OVERVIEW)]]), list of **recalculation reasons, No. 1 through 4, and 12**.  This is predominantly due to the update of the models of dairy cows, calves, heifers and male beef cattle, see main page of the agricultural sector ([[sector:agriculture:start|Chapter 5 - NFR 3 - Agriculture (OVERVIEW)]]), list of **recalculation reasons, No. 1 through 4, and 12**. 
Line 252: Line 212:
 //Tables REC-1 and REC-2: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021// //Tables REC-1 and REC-2: Comparison of the NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB) 2020 and 2021//
  
-^  NH3 emissions from manure management, in Gg                                                                                                                                        ||||||||||||||||+^  NH₃ emissions from manure management, in Gg                                                                                                                                        ||||||||||||||||
 |                                                SUB    1990    1995    2000    2005    2010    2011    2012    2013    2014    2015    2016    2017    2018    2019   ^ |                                                SUB    1990    1995    2000    2005    2010    2011    2012    2013    2014    2015    2016    2017    2018    2019   ^
 ^ Total                                          2021  |  303.26 |  256.08 |  256.91 |  257.32 |  252.88 |  253.17 |  257.21 |  258.42 |  260.03 |  256.36 |  253.73 |  252.85 |  247.20 |  243.31 | ^ Total                                          2021  |  303.26 |  256.08 |  256.91 |  257.32 |  252.88 |  253.17 |  257.21 |  258.42 |  260.03 |  256.36 |  253.73 |  252.85 |  247.20 |  243.31 |
Line 267: Line 227:
 ^                                                2020  |    9.44 |   11.02 |    9.25 |    9.31 |    8.33 |    8.09 |    8.07 |    7.98 |    7.91 |    7.80 |    7.71 |    7.64 |    7.53 |         | ^                                                2020  |    9.44 |   11.02 |    9.25 |    9.31 |    8.33 |    8.09 |    8.07 |    7.98 |    7.91 |    7.80 |    7.71 |    7.64 |    7.53 |         |
  
-^  NOx emissions from manure management, in Gg                                                                                                                          ^|||||||||||||||+^  NOₓ emissions from manure management, in Gg                                                                                                                          ||||||||||||||||
 ^                                                SUB    1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^ ^                                                SUB    1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^
 ^ Total                                          2021  |  1.720 |  1.551 |  1.523 |  1.534 |  1.529 |  1.502 |  1.480 |  1.475 |  1.482 |  1.465 |  1.455 |  1.444 |  1.418 |  1.401 | ^ Total                                          2021  |  1.720 |  1.551 |  1.523 |  1.534 |  1.529 |  1.502 |  1.480 |  1.475 |  1.482 |  1.465 |  1.455 |  1.444 |  1.418 |  1.401 |
Line 283: Line 243:
  
  
-**Planned improvements** +== Planned improvements ==
 No improvements are planned at present. No improvements are planned at present.
 +
  
 ===== NMVOC ===== ===== NMVOC =====
- 
- 
 In 2019, NMVOC emissions from manure management amount to 295.8 which is 97.2 % of total NMVOC emissions from the agricultural sector. 84.8 % originate from cattle, 4.7 % from pigs, and 9.4 % from poultry. In 2019, NMVOC emissions from manure management amount to 295.8 which is 97.2 % of total NMVOC emissions from the agricultural sector. 84.8 % originate from cattle, 4.7 % from pigs, and 9.4 % from poultry.
 All NMVOC emissions from the agricultural sector are excluded from emission accounting by adjustment as they are not considered in the NEC and Gothenburg commitments (see Chapter 11 - [[general:adjustments:adjustment_de-c|Adjustments and Emissions Reduction Commitments]]). All NMVOC emissions from the agricultural sector are excluded from emission accounting by adjustment as they are not considered in the NEC and Gothenburg commitments (see Chapter 11 - [[general:adjustments:adjustment_de-c|Adjustments and Emissions Reduction Commitments]]).
  
  
-**Method** +==== Method ====
 The Tier 2 methodology provided by EMEP (2019)-3B-28 was used to assess the NMVOC emissions from manure management for dairy cattle and other cattle. For all other animals the Tier 1 methodology (EMEP (2019)-3B-17) was used. The Tier 2 methodology provided by EMEP (2019)-3B-28 was used to assess the NMVOC emissions from manure management for dairy cattle and other cattle. For all other animals the Tier 1 methodology (EMEP (2019)-3B-17) was used.
  
-** Activity data** +=== Activity data ===
 Animal numbers serve as activity data, see Table 1. Animal numbers serve as activity data, see Table 1.
  
-**Emission factors** +=== Emission factors ===
 For the Tier 2 methodology applied to dairy cattle and other cattle the following data was used: For the Tier 2 methodology applied to dairy cattle and other cattle the following data was used:
- 
    * gross feed intake in MJ per year, country specific data from the annual reporting of greenhouse gas emissions, see NIR 2021, Chapter 5.1.3.3,    * gross feed intake in MJ per year, country specific data from the annual reporting of greenhouse gas emissions, see NIR 2021, Chapter 5.1.3.3,
-   * proportion x house of the year the animals spend in the livestock building: country specific data, being equal to 1 – xgraz with xgraz the proportion of the year spent on pasture, see NIR 2021, Chapter 19.3.2, +   * proportion x<sub>house</sub> of the year the animals spend in the livestock building: country specific data, being equal to 1 – x<sub>graz</sub> with x<sub>graz</sub> the proportion of the year spent on pasture, see NIR 2021, Chapter 19.3.2, 
-   FRACsilage 1 as proposed by EMEP (2019)-3B-29, since silage feeding for cattle is considered dominant in Germany +   FRAC<sub>silage</sub>: 1 as proposed by EMEP (2019)-3B-29, since silage feeding for cattle is considered dominant in Germany 
-   FRACsilage store: 0.25 as proposed by EMEP (2019)-3B-30 for European conditions +   FRAC<sub>silage store</sub>: 0.25 as proposed by EMEP (2019)-3B-30 for European conditions 
-   EFNMVOC silage_feeding, EFNMVOC, house, EFNMVOC, graz are taken from EMEP (2019)-3B-32, table 3.11 as 0.0002002, 0.0000353 and 0.0000069 kg NMVOC/MJ feed intake, respectively, +   EF<sub>NMVOC, silage_feeding</sub>EF<sub>NMVOC, house</sub>EF<sub>NMVOC, graz</sub> are taken from EMEP (2019)-3B-32, table 3.11 as 0.0002002, 0.0000353 and 0.0000069 kg NMVOC/MJ feed intake, respectively, 
-   EFNH3,storage, EFNH3,buildingand EFNH3,application are taken from the NH3 reporting (see above and 3.D).+   EF<sub>NH₃,storage</sub>EF<sub>NH₃,building</sub> and EF<sub>NH₃,application<sub> are taken from the NH<sub>3</sub> reporting (see above and 3.D).
  
 For all other animal categories the Tier 1 emission factors for NMVOC as provided in EMEP (2019)-3B-18, Table 3.4 [10] were used: For horses the emission factors for feeding with silage was chosen, for all other animals the emission factors for feeding without silage. Due to missing country-specific emission factors or emission factors that do not correspond to the inventory’s animal categories, the emission factors provided in EMEP (2019)-3B-18, Table 3.4, were used to define specific emission factors for weaners, boars, lambs, ponies/light horses and pullets, see Rösemann et al. (2021), Chapter 3.3.4.2. For all other animal categories the Tier 1 emission factors for NMVOC as provided in EMEP (2019)-3B-18, Table 3.4 [10] were used: For horses the emission factors for feeding with silage was chosen, for all other animals the emission factors for feeding without silage. Due to missing country-specific emission factors or emission factors that do not correspond to the inventory’s animal categories, the emission factors provided in EMEP (2019)-3B-18, Table 3.4, were used to define specific emission factors for weaners, boars, lambs, ponies/light horses and pullets, see Rösemann et al. (2021), Chapter 3.3.4.2.
Line 337: Line 291:
 ^ geese                              |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 | ^ geese                              |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |   0.489 |
  
-**Trend discussion for Key Sources** +=== Trend discussion for Key Sources ===
 Dairy cattle and other cattle are key sources of NMVOC emissions from manure management. The total NMVOC emissions from both animal categories strongly correlate with the animal numbers given in Table 1 (dairy cattle: R² = 0.895; other cattle: R² = 0.995). Dairy cattle and other cattle are key sources of NMVOC emissions from manure management. The total NMVOC emissions from both animal categories strongly correlate with the animal numbers given in Table 1 (dairy cattle: R² = 0.895; other cattle: R² = 0.995).
  
-**Recalculations** +=== Recalculations ===
 All time series of the emission inventory have completely been recalculated since 1990. Table REC-3 compares the recalculated time series of the NMVOC emissions from 3.B with the respective data of last year’s submission. The recalculated total emissions are lower by 4 to 11 %. This is due to improved methodology for the  cattle sector (**recalculation reasons 1 through 4**, see [[sector:agriculture:start|main page of the agricultural sector]]). All time series of the emission inventory have completely been recalculated since 1990. Table REC-3 compares the recalculated time series of the NMVOC emissions from 3.B with the respective data of last year’s submission. The recalculated total emissions are lower by 4 to 11 %. This is due to improved methodology for the  cattle sector (**recalculation reasons 1 through 4**, see [[sector:agriculture:start|main page of the agricultural sector]]).
 Emissions of other animals remained unchanged. Further details on recalculations are described in Rösemann et al. (2021), Chapter 3.5.2. Emissions of other animals remained unchanged. Further details on recalculations are described in Rösemann et al. (2021), Chapter 3.5.2.
Line 360: Line 312:
 ^                                                ^ 2020  |   40.46 |   36.94 |   38.62 |   39.61 |   39.89 |   42.29 |   44.89 |   46.87 |   46.70 |   45.93 |   45.42 |   45.56 |   45.11 |         | ^                                                ^ 2020  |   40.46 |   36.94 |   38.62 |   39.61 |   39.89 |   42.29 |   44.89 |   46.87 |   46.70 |   45.93 |   45.42 |   45.56 |   45.11 |         |
  
-**Planned improvements** +=== Planned improvements ===
 No improvements are planned at present. No improvements are planned at present.
  
 =====  TSP, PM10 and PM2.5 ===== =====  TSP, PM10 and PM2.5 =====
 +In 2019, TSP emissions from manure management amount to 71.1 % of total emissions from the agricultural sector. Within the emissions from manure management 22.4 % originate from cattle, 39.3 % from pigs, and 37.7 % from poultry. 42.7 % of the PM<sub>10</sub> emissions from the agricultural sector are caused by manure management, where 34.0 % originate from cattle, 18.9 % from pigs, and 46.2 % from poultry. PM<sub>2.5</sub> emissions from the agricultural sector mostly originate from manure management (84.8 %), of which are 77.5 % from cattle, 3.0 % from pigs, and 18.0 % from poultry.
  
- +==== Method ====
-In 2019, TSP emissions from manure management amount to 71.1 % of total emissions from the agricultural sector. Within the emissions from manure management 22.4 % originate from cattle, 39.3 % from pigs, and 37.7 % from poultry. 42.7 % of the PM<ub>10</sub> emissions from the agricultural sector are caused by manure management, where 34.0 % originate from cattle, 18.9 % from pigs, and 46.2 % from poultry. PM<sub>2.5</sub> emissions from the agricultural sector mostly originate from manure management (84.8 %), of which are 77.5 % from cattle, 3.0 % from pigs, and 18.0 % from poultry. +
- +
-**Method** +
 EMEP (2013)-3B-26 [9] provided a Tier 2 methodology. In the current Guidebook (EMEP, 2019), this methodology has been replaced by a Tier 1 methodology. However, EF for cattle derived with the EMEP 2013 Tier 2 methodology remained unchanged. So the EMEP 2013((EMEP (2013): EMEP/EEA air pollutant emission inventory guidebook – 2013)) methodology was kept for cattle. For swine the EMEP 2013 methodology was formally kept but the EMEP 2019 Tier 1 EF was used both for slurry and solid based manure management systems. The same was done with the EMEP 2016 EFs for laying hens (used for cages and perchery). In case the EMEP 2019 EFs are just the rounded EMEP 2013 EFs, the unrounded EMEP 2013 EFs were kept. EMEP (2013)-3B-26 [9] provided a Tier 2 methodology. In the current Guidebook (EMEP, 2019), this methodology has been replaced by a Tier 1 methodology. However, EF for cattle derived with the EMEP 2013 Tier 2 methodology remained unchanged. So the EMEP 2013((EMEP (2013): EMEP/EEA air pollutant emission inventory guidebook – 2013)) methodology was kept for cattle. For swine the EMEP 2013 methodology was formally kept but the EMEP 2019 Tier 1 EF was used both for slurry and solid based manure management systems. The same was done with the EMEP 2016 EFs for laying hens (used for cages and perchery). In case the EMEP 2019 EFs are just the rounded EMEP 2013 EFs, the unrounded EMEP 2013 EFs were kept.
 The inventory considers air scrubber systems in swine and poultry husbandry. For animal places equipped with air scrubbing the emission factors are reduced according to the removal efficiency of the air scrubber systems (90 % for TSP and PM<sub>10</sub>, 70 % for PM<sub>2.5</sub>). For details see Rösemann et al. (2021), Chapter 3.3.4.3.3. The inventory considers air scrubber systems in swine and poultry husbandry. For animal places equipped with air scrubbing the emission factors are reduced according to the removal efficiency of the air scrubber systems (90 % for TSP and PM<sub>10</sub>, 70 % for PM<sub>2.5</sub>). For details see Rösemann et al. (2021), Chapter 3.3.4.3.3.
  
-**Activity data** +=== Activity data ===
 Animal numbers serve as activity data, see Table 1. Animal numbers serve as activity data, see Table 1.
  
-**Emission factors** +=== Emission factors ===
 Tier 1 emission factors for TSP, PM<sub>10</sub> and PM<sub>2.5</sub> from livestock husbandry are provided in EMEP (2019)-3B-19, Table 3.5 and 55, Table A1.7. For cattle the Tier 2 emission factors provided in EMEP (2013)-3B-29, Table 3-11 were used, because they differentiate between slurry and solid manure systems and were also used to develop the EMEP 2019 Tier 1 emissions factors. Tier 1 emission factors for TSP, PM<sub>10</sub> and PM<sub>2.5</sub> from livestock husbandry are provided in EMEP (2019)-3B-19, Table 3.5 and 55, Table A1.7. For cattle the Tier 2 emission factors provided in EMEP (2013)-3B-29, Table 3-11 were used, because they differentiate between slurry and solid manure systems and were also used to develop the EMEP 2019 Tier 1 emissions factors.
  
Line 427: Line 373:
 ^ geese                                              0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 | ^ geese                                              0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |  0.0320 |
  
-**Trend discussion for Key Sources** +==== Trend discussion for Key Sources ====
 Swine and laying hens are key sources of TSP emissions from manure management. The total TSP emissions from swine mainly follow the animal numbers given in Table 1. However, due to air scrubbing and different emission factors of the different housing systems of the four swine subcategories (sows with piglets, weaners, fattening pigs, boars) and the varying population shares in those housing systems the R<sup>2</sup> of the linear regression is lower than 1 (0.79). For laying hens and broilers, due to the low prevalence of air scrubbing systems. TSP emissions almost perfectly correlate with the animal numbers provided in Table 1 (R<sup>2</sup> = 1). Swine and laying hens are key sources of TSP emissions from manure management. The total TSP emissions from swine mainly follow the animal numbers given in Table 1. However, due to air scrubbing and different emission factors of the different housing systems of the four swine subcategories (sows with piglets, weaners, fattening pigs, boars) and the varying population shares in those housing systems the R<sup>2</sup> of the linear regression is lower than 1 (0.79). For laying hens and broilers, due to the low prevalence of air scrubbing systems. TSP emissions almost perfectly correlate with the animal numbers provided in Table 1 (R<sup>2</sup> = 1).
  
-** Recalculations** +==== Recalculations ====
 Table REC-4 shows the effects of recalculations on emissions of particulate matter. Changes in the years 1990 through 1999 are a consequence of the update of the dairy cow model (**recalculation reason 1**, see [[sector:agriculture:start|main page of the agricultural sector]]). This update includes a modified calculation of the share of year spent on pasture, resulting in longer grazing periods and therefore lower emissions of particulate matter from manure management in the years 1990 through 1999. Differences of TSP and PM emissions in the years as of 2005 are due to updated activity data of air scrubbing systems for sows, weaners, fattening pigs and broilers, see **recalculation reasons 8 and 10** on [[sector:agriculture:start|the main page of the agricultural sector]]. Further details on recalculations are described in Rösemann et al. (2021), Chapter 3.5.2. Table REC-4 shows the effects of recalculations on emissions of particulate matter. Changes in the years 1990 through 1999 are a consequence of the update of the dairy cow model (**recalculation reason 1**, see [[sector:agriculture:start|main page of the agricultural sector]]). This update includes a modified calculation of the share of year spent on pasture, resulting in longer grazing periods and therefore lower emissions of particulate matter from manure management in the years 1990 through 1999. Differences of TSP and PM emissions in the years as of 2005 are due to updated activity data of air scrubbing systems for sows, weaners, fattening pigs and broilers, see **recalculation reasons 8 and 10** on [[sector:agriculture:start|the main page of the agricultural sector]]. Further details on recalculations are described in Rösemann et al. (2021), Chapter 3.5.2.
  
Line 446: Line 390:
 ^ PM<sub>2.5</sub>                                            2020  |   5.08 |   4.52 |   4.18 |   3.89 |   3.86 |   3.86 |   3.91 |   4.01 |   4.01 |   3.97 |   3.91 |   3.88 |   3.80 |        | ^ PM<sub>2.5</sub>                                            2020  |   5.08 |   4.52 |   4.18 |   3.89 |   3.86 |   3.86 |   3.91 |   4.01 |   4.01 |   3.97 |   3.91 |   3.88 |   3.80 |        |
  
-** Planned improvements** +===== Planned improvements =====
 No improvements are planned at present. No improvements are planned at present.
  
-**Uncertainty** +===== Uncertainty =====
 Details will be described in [[general:uncertainty_evaluation:start|chapter 1.7]]. Details will be described in [[general:uncertainty_evaluation:start|chapter 1.7]].