meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:energy:fuel_combustion:other_including_military:military_transport:military_aviation [2021/02/16 09:34] – [Table] kotzullasector:energy:fuel_combustion:other_including_military:military_transport:military_aviation [2021/12/15 20:00] (current) – external edit 127.0.0.1
Line 16: Line 16:
 For source category 1.A.5.b, consumption data for **kerosene**, until 1995, were drawn from a special analysis of the Working Group on Energy Balances (AGEB).  For source category 1.A.5.b, consumption data for **kerosene**, until 1995, were drawn from a special analysis of the Working Group on Energy Balances (AGEB). 
  
-For the years as of 1995, the official mineral-oil data of the Federal Republic of Germany (Amtliche Mineralöldaten der Bundesrepublik Deutschland 2012), prepared by the Federal Office of Economics and Export Control (BAFA), are used (BAFA, 2019) [((bibcite 1))]. Provided in units of 1,000 tonnes [kt], these amounts have to be converted into terajoules [TJ] on the basis of the relevant net calorific values given by (AGEB, 2019) [((bibcite 2))]. +For the years as of 1995, the official mineral-oil data of the Federal Republic of Germany (Amtliche Mineralöldaten der Bundesrepublik Deutschland 2012), prepared by the Federal Office of Economics and Export Control (BAFA), are used (BAFA, 2020) [(BAFA2020)]. Provided in units of 1,000 tonnes [kt], these amounts have to be converted into terajoules [TJ] on the basis of the relevant net calorific values given by (AGEB, 2020) [(AGEB2020)]. 
  
-As there is no consistent AGEB data availabe for **aviation gasoline**, delivery data from BAFA [((bibcite 1))] is used.+As there is no consistent AGEB data availabe for **aviation gasoline**, delivery data from BAFA [(BAFA2020)] is used.
  
 __Table 1: Sources for consumption data in 1.A.5.b__ __Table 1: Sources for consumption data in 1.A.5.b__
Line 32: Line 32:
 <sup>1</sup> possible reason for jumps in delivered amounts: storage (resulting in no (2008, 2011+) or very small deliveries (2009) (see also: FAQs) <sup>1</sup> possible reason for jumps in delivered amounts: storage (resulting in no (2008, 2011+) or very small deliveries (2009) (see also: FAQs)
  
 +{{ :sector:energy:fuel_combustion:other_incl_military:1a5bii_ad.png?700 }}
 +{{ :sector:energy:fuel_combustion:other_incl_military:1a5bii_ad_avgas.png?700 }}
  
- +==== Emission factors ====
-[[gallery size="medium"]] +
-: 1A5bii_AD.PNG +
-: 1A5bii_AD_AvGas.PNG +
-[[/gallery]] +
- +
-== Emission factors ==+
  
 Without better information, constant tier1 values are used mainly (see table below).  Without better information, constant tier1 values are used mainly (see table below). 
Line 47: Line 43:
  
 __Table 3: Country-specific emission factors, in kg/TJ__ __Table 3: Country-specific emission factors, in kg/TJ__
-||= ||= **NH,,3,,** ||= **NMVOC** ||= **NO,,x,,** ||= **SO,,x,,** ||= **PM,,2.5,, = PM,,10,,**^^1^^ ||= **TSP** ||= **BC**^^2^^ ||= **CO** ||= +                        **1990**   **1995**   **2000**   **2005**   **2010**   **2011**   **2012**   **2013**   **2014**   **2015**   **2016**   **2017**   **2018**   **2019**  
-||~ **Kerosene** ||> 4.00 ||> 98.0 ||> 205 ||> 4.65 ||||= 12.00 ||> 5.76 ||> 485 ||> +| **JET KEROSENE**                                                                                                                                                                               ||||||||||||||| 
-||~ **Avgas** ||= NE ||> 300 ||> 302 ||> 0.51 ||= 0.46 ||> 15.63^^3^^ ||> 0.07 ||> 15,000 ||> +^ NH<sub>3</sub>               4,00 |       4,00       4,00 |       4,00 |       4,00 |       4,00 |       4,00 |       4,00 |       4,00 |       4,00 |       4,00 |       4,00 |       4,00 |       4,00 | 
-^^1^^ EF(TSP) from 'Emissionen und Maßnahmenanalyse Feinstaub 2000-2020' [((bibcite 4))] also applied for PM,,10,, and PM,,2.5,, (assumption: > 99% of TSP consists of PM,,2.5,,) +^ NMVOC                  |       98,0 |       98,0       98,0 |       98,0 |       98,0 |       98,0 |       98,0 |       98,0 |       98,0 |       98,0 |       98,0 |       98,0 |       98,0 |       98,0 | 
-^^2^^ estimated via a f-BCs (avgas: 0.15, jet kerosene: 0.48) as provided in [((bibcite 3))], Chapter 1.A.3.a, 1.A.5.b Aviationpage 49"Conclusion"  +^ NO<sub>x</sub>                205 |        205        205 |        205 |        205 |        205 |        205 |        205 |        205 |        205 |        205 |        205 |        205 |        205 | 
-^^3^^ TSP from leaded aviation gasoline = EF(Pb) x 1.6 (see also: FAQs)+^ SO<sub>x</sub>               25,1 |       15,2 |       8,46 |       6,34 |       4,65 |       4,65       4,65       4,65       4,65       4,65       4,65 |       4,65 |       4,65 |       4,65 | 
 +^ BC<sup>1</sup>               5,76 |       5,76       5,76       5,76       5,76 |       5,76 |       5,76 |       5,76 |       5,76 |       5,76 |       5,76 |       5,76 |       5,76 |       5,76 | 
 +^ PM<sup>2</sup>               12,0 |       12,0 |       12,0 |       12,0 |       12,0 |       12,0 |       12,0 |       12,0 |       12,0 |       12,0 |       12,0 |       12,0 |       12,0 |       12,0 | 
 +^ CO                            485 |        485 |        485 |        485 |        485 |        485 |        485 |        485 |        485 |        485 |        485 |        485 |        485 |        485 | 
 +| **AVIATION GASOLINE**                                                                                                                                                                          ||||||||||||||| 
 +^ NH<sub>3</sub>          NE                                                                                                                                                                    |||||||||||||| 
 +^ NMVOC                  |        300 |        300        300 |        300 |        300 |        300 |        300 |        300 |        300 |        300 |        300 |        300 |        300 |        300 | 
 +^ NO<sub>x</sub>                302 |        302        302 |        302 |        302 |        302 |        302 |        302 |        302 |        302 |        302 |        302 |        302 |        302 | 
 +^ SO<sub>x</sub>               0,51 |       0,51       0,51       0,51       0,51       0,51       0,51       0,51       0,51       0,51 |       0,51 |       0,51 |       0,51 |       0,51 
 +BC<sup>1</sup>               1,10 |       1,10 |       1,10 |       1,10 |       1,10 |       1,10 |       1,10 |       1,10 |       1,10 |       1,10 |       1,10 |       1,10 |       1,10 |       1,10 | 
 +PM<sup>2</sup>               7,50 |       7,50 |       7,50 |       7,50 |       7,50 |       7,50 |       7,50 |       7,50 |       7,50 |       7,50 |       7,50 |       7,50 |       7,50 |       7,50 | 
 +TSP<sup>3</sup>        |       22,7 |       22,7 |       22,7 |       22,7 |       22,7 |       22,7 |       22,7 |       22,7 |       22,7 |       22,7 |       22,7 |       22,7 |       22,7 |       22,7 | 
 +CO                          15000 |      15000 |      15000 |      15000 |      15000 |      15000 |      15000 |      15000 |      15000 |      15000 |      15000 |      15000 |      15000 |      15000 | 
 +<sup>1</sup> estimated via a f-BCs (avgas: 0.15, jet kerosene: 0.48) as provided in [(EMEPEEA2019)] \\ 
 +<sup>2</sup> EF(PM<sub>2.5</sub>) also applied for PM<sub>10</sub>and TSP (assumption> 99% of TSP from diesel oil combustion consists of PM<sub>2.5</sub>)\\ 
 +<sup>3</sup> TSP from leaded aviation gasoline = EF(Pb) x 1.6 (see also: FAQs)
  
-**NOTE:** For the country-specific emission factors applied for particulate matter, no clear indication is available, whether or not condensables are included. +<WRAP center round info 100%> 
 +For the country-specific emission factors applied for particulate matter, no clear indication is available, whether or not condensables are included. 
 +</WRAP> 
 +  
 +<WRAP center round info 100%> 
 +For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources. - Here, regarding lead and TSP from leaded avgas, constant tier1 EFs based on the average lead content of AvGas 100 LL are used. 
 +</WRAP>
  
-For lead and TSP from leaded avgas, constant tier1 EFs based on the average lead content of AvGas 100 LL are used. 
  
-> For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to [[[ appendix2.3-HM-from-mobile-sources | Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources]]] and [[[ appendix2.4-POPs-from-mobile-sources | Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources ]]].+===== Discussion of emission trends =====
  
-=== Discussion of emission trends === +<WRAP center round info 60%> 
- +As only NFR 1.A.5.b as a whole is taken into account within the key category analysis, this country-specific sub-sector is not considered separately. 
-This sub-category is **not considered separately in the key category analysis**.+</WRAP>
  
 Due to the application of very several tier1 emission factors, most emission trends reported for this sub-category only reflect the trend in fuel deliveries. Due to the application of very several tier1 emission factors, most emission trends reported for this sub-category only reflect the trend in fuel deliveries.
 Therefore, the fuel-consumption dependend trends in emission estimates are only influenced by the annual fuel mix. Therefore, the fuel-consumption dependend trends in emission estimates are only influenced by the annual fuel mix.
  
-[[gallery size="medium"]] +{{ :sector:energy:fuel_combustion:other_incl_military:1a5bii_em_sox.png?700 }} 
-1A5bii_EM_NMVOC.png   +{{ :sector:energy:fuel_combustion:other_incl_military:1a5bii_em_co.png?700 }}
-1A5bii_EM_NOx.png  +
-1A5bii_EM_SOx.png   +
-1A5bii_EM_CO.png  +
-1A5bii_EM_PM.png  +
-[[/gallery]]+
  
-Here, as the EF(BC) are estimated via fractions provided in [((bibcite 3))], black carbon emissions follow the corresponding emissions of PM,,2.5,,.+Here, as the EF(BC) are estimated via fractions provided in [((bibcite 3))], black carbon emissions follow the corresponding emissions of PM<sub>2.5</sub>.
  
 Nonetheless, this NFR category shows interesting trends for emissions of **Lead (Pb)** from leaded gasoline (until 1997) and aviation gasoline:  Nonetheless, this NFR category shows interesting trends for emissions of **Lead (Pb)** from leaded gasoline (until 1997) and aviation gasoline: 
  
-[[gallery size="medium"]] +{{ :sector:energy:fuel_combustion:other_incl_military:1a5bii_em_pb_avgas.png?700 }}
-1A5bii_EM_Pb_AvGas.PNG  +
-[[/gallery]]+
  
 Until 1997, lead emissions were dominated by the combustion of leaded gasoline in military ground-based vehicles. Therefore, the over-all trend for lead emissions from military vehicles and aircraft is driven mostly by the abolition of leaded gasoline in 1997. Towards this date, the amount of leaded gasoline decreased significantly. After 1997, the only source for lead from mobile fuel combustion is avgas used in military aircraft.  Until 1997, lead emissions were dominated by the combustion of leaded gasoline in military ground-based vehicles. Therefore, the over-all trend for lead emissions from military vehicles and aircraft is driven mostly by the abolition of leaded gasoline in 1997. Towards this date, the amount of leaded gasoline decreased significantly. After 1997, the only source for lead from mobile fuel combustion is avgas used in military aircraft. 
Line 88: Line 97:
 === Recalculations === === Recalculations ===
  
-With  **activity data** for avgas remaining unrevised, small changes occur for jet kerosene due to corrected Net Calorific Values (NCVs) for 2016 and 2017. +With both **activity data** and **emission factors** remaining unrevisedno recalculations took place with this submission.
- +
-__Table: Revised activity data 2016 and 2017, in terajoules__ +
-|| ||= **2016** ||= **2017** ||= +
-||||||< **1.A.5.b ii TOTAL** ||= +
-||~ Submission 2020 ||> 3,844.98 ||> 1,506.56 ||= +
-||~ Submission 2019 ||> 3,845.25 ||> 1,506.67 ||= +
-||~ absolute change ||> -0.27 ||> -0.11 ||= +
-||~ relative change ||> -0.01% ||> -0.01% ||= +
-||||||< **Jet Kerosene** ||= +
-||~ Submission 2020 ||> 3,844.85 ||> 1,506.56 ||= +
-||~ Submission 2019 ||> 3,845.12 ||> 1,506.67 ||= +
-||~ absolute change ||> -0.27 ||> -0.11 ||= +
-||~ relative change ||> -0.01% ||> -0.01% ||= +
-||||||< **Avgas** ||= +
-||~ Submission 2020 ||> 0.13 ||> 0.00 ||= +
-||~ Submission 2019 ||> 0.13 ||> 0.00 ||= +
-||~ absolute change ||> 0.00 ||> 0.00 ||= +
-||~ relative change ||> 0.00% ||> ||= +
  
 <WRAP center round info 60%> <WRAP center round info 60%>
Line 121: Line 111:
 ===== Planned improvements ===== ===== Planned improvements =====
  
-There are no sub-sector specific improvements planned at the moment.+There are no specific improvements planned at the moment.
  
-=== FAQs ===+===== FAQs =====
  
 //**What is the reason for the big jumps in the consumption of aviation gasoline in 2006 & '07 and the zero-consumption in 2008?**// //**What is the reason for the big jumps in the consumption of aviation gasoline in 2006 & '07 and the zero-consumption in 2008?**//
Line 133: Line 123:
  
 assumption by party: aviation gasoline = AvGas 100 LL assumption by party: aviation gasoline = AvGas 100 LL
-(AvGas 100 LL is the predominant sort of aviation gasoline in Western Europe)[[footnote]] https://en.wikipedia.org/wiki/Avgas : "...Common in North America and western Europe, limited availability elsewhere worldwide."  ((https://en.wikipedia.org/wiki/Avgas : "…Common in North America and western Europe, limited availability elsewhere worldwide.")) +(AvGas 100 LL is the predominant sort of aviation gasoline in Western Europe) ((https://en.wikipedia.org/wiki/Avgas : "…Common in North America and western Europe, limited availability elsewhere worldwide.")) 
-lead content of AvGas 100 LL: 0.56 g lead/liter (as tetra ethyl lead)[[footnote]] EMEP/EEA GB 2016: "Thus, general emission factors for the stationary combustion of kerosene and the combustion of gasoline in cars may be applied. The only exception is lead. Lead is added to aviation gasoline to increase the octane number. The lead content is higher than in leaded car gasoline, and the maximum permitted levels in the UK are shown below. A value of 0.6 g of lead per litre of gasoline should be used as the default value if there is an absence of more accurate information. Actual data may be obtained from oil companies."((EMEP/EEA GB 2016: "Thus, general emission factors for the stationary combustion of kerosene and the combustion of gasoline in cars may be applied. The only exception is lead. Lead is added to aviation gasoline to increase the octane number. The lead content is higher than in leaded car gasoline, and the maximum permitted levels in the UK are shown below. A value of 0.6 g of lead per litre of gasoline should be used as the default value if there is an absence of more accurate information. Actual data may be obtained from oil companies."))+lead content of AvGas 100 LL: 0.56 g lead/liter (as tetra ethyl lead) ((EMEP/EEA GB 2016: "Thus, general emission factors for the stationary combustion of kerosene and the combustion of gasoline in cars may be applied. The only exception is lead. Lead is added to aviation gasoline to increase the octane number. The lead content is higher than in leaded car gasoline, and the maximum permitted levels in the UK are shown below. A value of 0.6 g of lead per litre of gasoline should be used as the default value if there is an absence of more accurate information. Actual data may be obtained from oil companies."))
  
 The applied procedure is similar to the one used for calculating lead emissions from leaded gasoline used in road transport. (There, in contrast to aviation gasoline, the lead content constantly declined resulting in a ban of leaded gasoline in 1997.) The applied procedure is similar to the one used for calculating lead emissions from leaded gasoline used in road transport. (There, in contrast to aviation gasoline, the lead content constantly declined resulting in a ban of leaded gasoline in 1997.)
Line 142: Line 132:
 The TSP emissions calculated depend directly on the reported lead emissions: The emission factor for TSP is 1.6 times the emission factor used for lead: EF(TSP) = 1.6 x EF(Pb). - The applied procedure is similar to the one used for calculating TSP emissions from leaded gasoline used in road transport. The TSP emissions calculated depend directly on the reported lead emissions: The emission factor for TSP is 1.6 times the emission factor used for lead: EF(TSP) = 1.6 x EF(Pb). - The applied procedure is similar to the one used for calculating TSP emissions from leaded gasoline used in road transport.
  
-**//Why does the party report TSP emissions from leaded avgas, but no such PM,,2.5,, or PM,,10,, emissions?//**+**//Why does the party report TSP emissions from leaded avgas, but no such PM<sub>2.5</sub> or PM<sub>10</sub> emissions?//**
  
-The EF(TSP) is estimated from the EF(Pb) which has been calculated from the lead content of Avgas 100 LL. There is no information on the percetual shares of PM,,2.5,, & PM,,10,, in the reported TSP and therefore no EF(PM,,2.5,,) & EF(PM,,10,,) were deducted.+The EF(TSP) is estimated from the EF(Pb) which has been calculated from the lead content of Avgas 100 LL. There is no information on the percetual shares of PM<sub>2.5</sub> & PM<sub>10</sub> in the reported TSP and therefore no EF(PM<sub>2.5</sub>) & EF(PM<sub>10</sub>) were deducted.
  
 **//Why are similar EF applied for estimating exhaust heavy metal emissions from both fossil and biofuels?//** **//Why are similar EF applied for estimating exhaust heavy metal emissions from both fossil and biofuels?//**
Line 150: Line 140:
 The EF provided in [((bibcite 3))] represent summatory values for (i) the fuel's and (ii) the lubricant's heavy-metal content as well as (iii) engine wear. Here, there might be no heavy metal contained the biofuels. But since the specific shares of (i), (ii) and (iii) cannot be separated, and since the contributions of lubricant and engine wear might be dominant, the same emission factors are applied to biodiesel and bioethanol. The EF provided in [((bibcite 3))] represent summatory values for (i) the fuel's and (ii) the lubricant's heavy-metal content as well as (iii) engine wear. Here, there might be no heavy metal contained the biofuels. But since the specific shares of (i), (ii) and (iii) cannot be separated, and since the contributions of lubricant and engine wear might be dominant, the same emission factors are applied to biodiesel and bioethanol.
  
------+[(AGEB2020>AGEB, 2020: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: http://www.ag-energiebilanzen.de/7-0-Bilanzen-1990-2018.html, (Aufruf: 29.11.2020), Köln & Berlin, 2020.)
- +[(BAFA2020>BAFA, 2020: Federal Office of Economics and Export Control (Bundesamt für Wirtschaft und Ausfuhrkontrolle, BAFA): Amtliche Mineralöldaten für die Bundesrepublik Deutschland; 
-[[bibliography]+URL: https://www.bafa.de/SharedDocs/Downloads/DE/Energie/Mineraloel/moel_amtliche_daten_2018_dezember.html, Eschborn, 2020.)]    
-: 1 : BAFA, 2019: Federal Office of Economics and Export Control (Bundesamt für Wirtschaft und Ausfuhrkontrolle, BAFA): Amtliche Mineralöldaten für die Bundesrepublik Deutschland;  +[(KNOERR2020b> Knörr et al. (2020b)KnörrW., Heidt, C., Gores, S., & Bergk, F.ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Aktualisierung des Modells TREMOD-Mobile Machinery (TREMOD MM) 2020, Heidelberg, 2020.)
-URL: https://www.bafa.de/SharedDocs/Downloads/DE/Energie/Mineraloel/moel_amtliche_daten_2017_dezember.html, Eschborn, 2019.  +[(EMEPEEA2019> EMEP/EEA2019: EMEP/EEA air pollutant emission inventory guidebook – 2019, Copenhagen, 2019.)
-2 : AGEB2019Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: https://ag-energiebilanzen.de/7-0-Bilanzen-1990-2017.html, (Aufruf29.11.2019)Köln Berlin2019. +[(RENTZ2008> Rentz et al., 2008Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des Umweltbundesamtes, FKZ 205 67 444, UBA Texte | 01/2008, January 2008 - URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer )] 
-3EMEP/EEA, 2019EMEP/EEA air pollutant emission inventory guidebook 2019Copenhagen2019+[(KNOERR2009> Knörr et al. (2009)Knörr, W., Heldstab, J., & KasserF.: Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland; final report; URLhttps://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3937.pdfFKZ 360 16 023Heidelberg & Zürich, 2009.)] 
-: 4 : IZT, 2007: Joerß, W. et al.: Emissionen und Maßnahmenanalyse Feinstaub 2000 – 2020, Institut für Zukunftsstudien und Technologiebewertung (IZT), Berlin, Im Auftrag des Umweltbundesamtes, FKZ 204 42 202/2, Dessau-Roßlau, August 2007 - URL: https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3309.pdf +[(IZT2007> IZT, 2007: Joerß, W. et al.: Emissionen und Maßnahmenanalyse Feinstaub 2000 – 2020, Institut für Zukunftsstudien und Technologiebewertung (IZT), Berlin, Im Auftrag des Umweltbundesamtes, FKZ 204 42 202/2, Dessau-Roßlau, August 2007 - URL: https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3309.pdf )]
-[[/bibliography]]+