1.A.5.b iii - Military Navigation

Short description

In sub-category 1.A.5.b iii - Other, Mobile (including Military) emissions from military navigation are reported.

M	ethod	AD	EF	Key Category
T1	L, T2	NS, M	D, M, CS, T1, T3	see superordinate chapter

Method

Activity Data

Primary fuel data for national military waterborne activities is included in NEB lines 6 ('International Deep-Sea Bunkers') and 64 ('Coastal and Inland Navigation') for IMO and non-IMO ships respectively.

The annual shares used within NFR 1.A.5.b iii are therefore calculated within (Deichnik, K. (2019)), where ship movement data (AIS signal) allows for a bottom-up approach providing the needed differentiation.

Table 1: Annual fuel consumption, in terajoules

	= 1990	= 1995	= 2000	= 2005	= 2006	= 2007	= 2008	= 2009	= 2010	= 2011	= 2012	= 2013	= 2014	= 2015	= 2016	= 2017	= 2018
~ Diesel Oil	> 983	> 665	> 563	> 410	> 383	> 366	> 360	> 349	> 347	> 330	> 313	> 302	> 332	> 273	> 359	> 489	> 423
~ Biodiesel	> 0	> 0	> 0	> 9	> 11	> 16	> 18	> 24	> 22	> 21	> 20	> 18	> 19	> 14	> 11	> 11	> 11
~ Heavy Fuel Oil	> 0	> 0	> 0	> 0	> 0	> 0	> 0	> 0	> 0	> 0	> 0	> 0	> 0	> 0	> 0	> 0	> 0
Σ 1.A.5.b iii	~ 983	~ 665	~ 563	~ 419	~ 394	~ 382	~ 378	~ 373	~ 369	~ 351	~ 334	~ 319	~ 351	~ 286	~ 370	~ 500	~ 434

source: Deichnik, K. (2019): BSH model 1)

gallery size="medium": 1A5biii AD.png: 1A5biii AD bio.png gallery

++ Emission factors

The emission factors applied here, are derived from different sources and therefore are of very different quality.

For the main pollutants, country-specific implied values are used, that are based on tier3 EF included in (Deichnik, K. (2019)) ²⁾ which mainly relate on values from the EMEP/EEA guidebook 2019 ³⁾. These modelled IEFs take into account the ship specific information derived from AIS data as well as the mix of fuel-qualities applied depending on the type of ship and the current state of activity.

Table 2: Annual country-specific emission factors for diesel fuels^^1^^, in kg/TJ

	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=
	1990	1995	2000	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
~	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>
NH,,3,,	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.32	0.33	0.33	0.33
~	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>
NMVOC	41.4	41.4	41.4	41.4	41.4	41.4	41.4	41.4	41.4	41.4	41.4	41.6	41.1	47.7	37.4	38.0	39.1
~	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>
NO,,x,,	1,106	1,106	1,106	1,106	1,106	1,106	1,106	1,106	1,106	1,106	1,106	1,105	1,098	1,011	1,119	1,124	1,117
~	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>
SO,,x,,	466	419	233	186	186	186	140	69.8	69.8	65.2	59.4	55.9	53.4	40.0	38.7	38.8	39.3
~ BC	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>
	109	98.3	54.6	43.7	43.7	43.7	32.8	16.4	16.4	15.3	15.3	15.3	16.1	19.6	16.3	15.2	15.8
~	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>
PM,,2.5,,	352	317	176	141	141	141	106	52.9	52.9	49.3	49.3	49.3	51.9	63.2	52.6	49.0	51.0
~	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>
PM,,10,,	377	339	189	151	151	151	113	56.6	56.6	52.8	52.8	52.7	55.5	67.7	56.3	52.4	54.6
~ TSP	>	>	>	>	>	>	>	>	>	>	>	> 7	>	>	>	>	>
	377	339	189	151		151	113	56.6	56.6	52.8	52.8			67.7	56.3	52.4	54.6
~ CO	126	126	126	126	> 126	126	126	126	126	126	126	126	>) 1E0	>	>	>
-	136	136	136	136	136	136	136	136	136	136	136	136	142	158	148	139	142
1																	
2																	
3																	

NOTE: With respect to the emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly.footnote During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions, footnote

For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources] and Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources].

[!-

+ Discussion of emission trends

This sub-category is not considered separately in the key category analysis.

Due to the application of very several tier1 emission factors, most emission trends reported for this sub-category only reflect the trend in fuel deliveries. Therefore, the fuel-consumption dependend trends in emission estimates are only influenced by the annual fuel mix.

++ Selected main pollutants: NO,,x,,

gallery size="medium" : 1A5biii_EM(NOx).png gallery

++ Sulphur dioxide and particulate matter

As fuel sulphur content underlies strict legislation, the trends of these directly related emissions

reflect the outcome of ever lower fuel sulphur contents.

gallery size="medium": 1A5biii EM(SOx).png: 1A5biii EM(PM).png gallery

-]

+ Recalculations

The small changes in the **activity data** applied result solely from a revised biofuel share for biodiesel in 2017:

Table 4: Revised fuel consumption data 2017, in terajoules

	= TOTAL	= Diesel Oil	= Biodiesel
~ Submission 2020	> 500.2	> 489.3	> 10.9
~ Submission 2019	> 500.6	> 489.3	> 11.3
~ absolute change	> -0.40	> 0.00	> -0.40
~ relative change	> -0.08%	> 0.00%	> -3.57%

In contrast, all (annual) country-specific **emission factors** remain unaltered.

For more pollutant-specific information on **recalculated emission estimates for Base Year and 2017**, please see the pollutant specific recalculation tables following chapter 8.1 - Recalculations].

+ Uncertainties

See superordinate chapter] on NFR 1.A.5.b.

+ Planned improvements

A **routine revision** of the underlying model is planned for the next annual submission.

bibliography

: 1 : Deichnik (2019): Deichnik, K.: Aktualisierung und Revision des Modells zur Berechnung der spezifischen Verbräuche und Emissionen des von Deutschland ausgehenden Seeverkehrs. from Bundesamts für Seeschifffahrt und Hydrographie (BSH); Hamburg, 2019. : 2 : EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook 2019, Copenhagen, 2019. : 3 : Rentz et al., 2008: Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des Umweltbundesamtes, FKZ 205 67 444, UBA Texte | 01/2008, January 2008 - URL:

http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer bibliography

^{1) (}bibcite 1)

²⁾ (bibcite 1)

^{3) (}bibcite 2)