meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
sector:energy:fuel_combustion:other_including_military:military_transport:military_navigation [2021/01/15 17:10] – created kotzullasector:energy:fuel_combustion:other_including_military:military_transport:military_navigation [2021/12/15 20:00] (current) – external edit 127.0.0.1
Line 5: Line 5:
 In sub-category //1.A.5.b iii - Other, Mobile (including Military)// emissions from military navigation are reported.  In sub-category //1.A.5.b iii - Other, Mobile (including Military)// emissions from military navigation are reported. 
  
-^ Method  ^ AD ^ EF ^ Key Category ^ + Method  AD      EF                 Key Category Analysis                                                                                             
-| T1, T2 | NS, M | D, M, CS, T1, T3 | see [[[1-a-5-b-other-military-mobile-combustion | superordinate chapter]]|+ T1, T2   NS, M   D, M, CS, T1, T3   see [[sector:energy:fuel_combustion:other_including_military:military_transport| superordinate chapter]]  |
  
-===== Method =====+===== Methodology =====
  
-===Activity Data ===+==== Activity Data ====
  
 Primary fuel data for national military waterborne activities is included in NEB lines 6 ('International Deep-Sea Bunkers') and 64 ('Coastal and Inland Navigation') for IMO and non-IMO ships respectively. Primary fuel data for national military waterborne activities is included in NEB lines 6 ('International Deep-Sea Bunkers') and 64 ('Coastal and Inland Navigation') for IMO and non-IMO ships respectively.
  
-The annual shares used within NFR 1.A.5.b iii are therefore calculated within (Deichnik, K. (2019)), where ship movement data (AIS signal) allows for a bottom-up approach providing the needed differentiation.+The annual shares used within NFR 1.A.5.b iii are therefore calculated within (Deichnik, K. (2020)) [(DEICHNIK2020)], where ship movement data (AIS signal) allows for a bottom-up approach providing the needed differentiation.
  
 __Table 1: Annual fuel consumption, in terajoules__ __Table 1: Annual fuel consumption, in terajoules__
-|| ||= **1990** ||= **1995** ||= **2000** ||= **2005** ||= **2006** ||= **2007** ||= **2008** ||= **2009** ||= **2010** ||= **2011** ||= **2012** ||= **2013** ||= **2014** ||= **2015** ||= **2016** ||= **2017** ||= **2018** ||= +                    **1990**   **1995**   **2000**   **2005**   **2006**   **2007**   **2008**   **2009**   **2010**   **2011**   **2012**   **2013**   **2014**   **2015**   **2016**   **2017**   **2018**  **2019**  
-||~ Diesel Oil ||> 983 ||> 665 ||> 563 ||> 410 ||> 383 ||> 366 ||> 360 ||> 349 ||> 347 ||> 330 ||> 313 ||> 302 ||> 332 ||> 273 ||> 359 ||> 489 ||> 423 ||> +Diesel Oil                983 |        665 |        563 |        410 |        383 |        366 |        360 |        349 |        347 |        330 |        313 |        302 |        332 |        273 |        359 |        489 |        436       558 
-||~ Biodiesel ||> 0 ||> 0 ||> 0 ||> 9 ||> 11 ||> 16 ||> 18 ||> 24 ||> 22 ||> 21 ||> 20 ||> 18 ||> 19 ||> 14 ||> 11 ||> 11 ||> 11 ||> +Biodiesel           NO         NO         NO         NO         NO         NO         NO         NO         NO         NO         NO         NO         NO         NO         NO         NO         NO         NO       
-||~ Heavy Fuel Oil ||> 0 ||> 0 ||> 0 ||> 0 ||> 0 ||> 0 ||> 0 ||> 0 ||> 0 ||> 0 ||> 0 ||> 0 ||> 0 ||> 0 ||> 0 ||> 0 ||> 0 ||> +Heavy Fuel Oil      NO         NO         NO         NO         NO         NO         NO         NO         NO         NO         NO         NO         NO         NO         NO         NO         NO         NO       
-|| **Ʃ 1.A.5.b iii** ||~ 983 ||~ 665 ||~ 563 ||~ 419 ||~ 394 ||~ 382 ||~ 378 ||~ 373 ||~ 369 ||~ 351 ||~ 334 ||~ 319 ||~ 351 ||~ 286 ||~ 370 ||~ 500 ||~ 434 ||> +| **Ʃ 1.A.5.b iii**         983 ^        665 ^        563 ^        419 ^        394 ^        382 ^        378 ^        373 ^        369 ^        351 ^        334 ^        319 ^        351 ^        286 ^        370 ^        500 ^        434 ^       558 ^ 
-source: Deichnik, K. (2019): BSH model [((bibcite 1))]+source: Deichnik, K. (2020): BSH model [(DEICHNIK2020)]
  
-[[gallery size="medium"]] +{{ :sector:energy:fuel_combustion:other_incl_military:1a5biii_ad.png?700 }}
-1A5biii_AD.png +
-1A5biii_AD_bio.png +
-[[/gallery]]+
  
-++ Emission factors+==== Emission factors ====
  
 The emission factors applied here, are derived from different sources and therefore are of very different quality. The emission factors applied here, are derived from different sources and therefore are of very different quality.
  
-For the main pollutants, country-specific implied values are used, that are based on tier3 EF included in (Deichnik, K. (2019)) [((bibcite 1))] which mainly relate on values from the EMEP/EEA guidebook 2019 [((bibcite 2))]. These modelled IEFs take into account the ship specific information derived from AIS data as well as the mix of fuel-qualities applied depending on the type of ship and the current state of activity.+For the main pollutants, country-specific implied values are used, that are based on tier3 EF included in (Deichnik (2020)) [(DEICHNIK2020)] which mainly relate on values from the EMEP/EEA guidebook 2019 [(EMEPEEA2019)]. These modelled IEFs take into account the ship specific information derived from AIS data as well as the mix of fuel-qualities applied depending on the type of ship and the current state of activity.
  
-__Table 2: Annual country-specific emission factors for diesel fuels^^1^^, in kg/TJ__ +__Table 2: Annual country-specific implied emission factors<sup>1</sup> for diesel fuels, in kg/TJ__
-|| ||= **1990** ||= **1995** ||= **2000** ||= **2005** ||= **2006** ||= **2007** ||= **2008** ||= **2009** ||= **2010** ||= **2011** ||= **2012** ||= **2013** ||= **2014** ||= **2015** ||= **2016** ||= **2017** ||= **2018** ||= +
-||~ NH,,3,,      ||> 0.33 ||> 0.33 ||> 0.33 ||> 0.33 ||> 0.33 ||> 0.33 ||> 0.33 ||> 0.33 ||> 0.33 ||> 0.33 ||> 0.33 ||> 0.33 ||> 0.33 ||> 0.32 ||> 0.33 ||> 0.33 ||> 0.33 ||= +
-||~ NMVOC ||> 41.4 ||> 41.4 ||> 41.4 ||> 41.4 ||> 41.4 ||> 41.4 ||> 41.4 ||> 41.4 ||> 41.4 ||> 41.4 ||> 41.4 ||> 41.6 ||> 41.1 ||> 47.7 ||> 37.4 ||> 38.0 ||> 39.1 ||= +
-||~ NO,,x,, ||> 1,106 ||> 1,106 ||> 1,106 ||> 1,106 ||> 1,106 ||> 1,106 ||> 1,106 ||> 1,106 ||> 1,106 ||> 1,106 ||> 1,106 ||> 1,105 ||> 1,098 ||> 1,011 ||> 1,119 ||> 1,124 ||> 1,117 ||= +
-||~ SO,,x,, ||> 466 ||> 419 ||> 233 ||> 186 ||> 186 ||> 186 ||> 140 ||> 69.8 ||> 69.8 ||> 65.2 ||> 59.4 ||> 55.9 ||> 53.4 ||> 40.0 ||> 38.7 ||> 38.8 ||> 39.3 ||= +
-||~ BC ||> 109 ||> 98.3 ||> 54.6 ||> 43.7 ||> 43.7 ||> 43.7 ||> 32.8 ||> 16.4 ||> 16.4 ||> 15.3 ||> 15.3 ||> 15.3 ||> 16.1 ||> 19.6 ||> 16.3 ||> 15.2 ||> 15.8 ||= +
-||~ PM,,2.5,, ||> 352 ||> 317 ||> 176 ||> 141 ||> 141 ||> 141 ||> 106 ||> 52.9 ||> 52.9 ||> 49.3 ||> 49.3 ||> 49.3 ||> 51.9 ||> 63.2 ||> 52.6 ||> 49.0 ||> 51.0 ||= +
-||~ PM,,10,, ||> 377 ||> 339 ||> 189 ||> 151 ||> 151 ||> 151 ||> 113 ||> 56.6 ||> 56.6 ||> 52.8 ||> 52.8 ||> 52.7 ||> 55.5 ||> 67.7 ||> 56.3 ||> 52.4 ||> 54.6 ||= +
-||~ TSP ||> 377 ||> 339 ||> 189 ||> 151 ||> 151 ||> 151 ||> 113 ||> 56.6 ||> 56.6 ||> 52.8 ||> 52.8 ||> 52.7 ||> 55.5 ||> 67.7 ||> 56.3 ||> 52.4 ||> 54.6 ||= +
-||~ CO ||> 136 ||> 136 ||> 136 ||> 136 ||> 136 ||> 136 ||> 136 ||> 136 ||> 136 ||> 136 ||> 136 ||> 136 ||> 142 ||> 158 ||> 148 ||> 139 ||> 142 ||= +
-^^1^^ due to lack of better information: similar EF are applied for fossil diesel oil and biodiesel +
-^^2^^ ratio PM,,2.5,, : PM,,10,, : TSP derived from the tier1 default EF as provided in [((bibcite 2))] +
-^^3^^ estimated from a BC-fraction of 0.31 as provided in [((bibcite 2))], chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii Navigation, Table 3-2+
  
-**NOTE:** With respect to the emission factors applied for particulate mattergiven the circumstances during test-bench measurementscondensables are most likely included at least partly.[[footnote]] During test-bench measurementstemperatures are likely to be significantly higher than under real-world conditionsthus reducing condensationOn the contrarysmaller dillution (higher number of primary particles acting as condensation germstogether with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions. [[/footnote]]+|                   |  **1990**   **1995**  |  **2000**  |  **2005**  |  **2006**  |  **2007**  |  **2008**  |  **2009**  |  **2010**  |  **2011**  |  **2012**  |  **2013**  |  **2014**  |  **2015**  |  **2016**  |  **2017**  |  **2018**  | **2019** 
 +^ NH<sub>3</sub>    |       0,33 |       0,33 |       0,33 |       0,33 |       0,33 |       0,33 |       0,33 |       0,33 |       0,33 |       0,33 |       0,33 |       0,33 |       0,33 |       0,32 |       0,33 |       0,33 |       0,33 |      0,33 | 
 +^ NMVOC                   41,4 |       41,4 |       41,4 |       41,4 |       41,4 |       41,4 |       41,4 |       41,4 |       41,4 |       41,4 |       41,4 |       41,6 |       41,1 |       47,7 |       37,4 |       38,0 |       39,1 |      38,2 | 
 +^ NO<sub>x</sub>    |      1.106 |      1.106 |      1.106 |      1.106 |      1.106 |      1.106 |      1.106 |      1.106 |      1.106 |      1.106 |      1.106 |      1.105 |      1.098 |      1.011 |      1.119 |      1.124 |      1.117 |     1.134 | 
 +^ SO<sub>x</sub>    |        466 |        419 |        233 |        186 |        186 |        186 |        140 |       69,8 |       69,8 |       65,2 |       59,4 |       55,9 |       53,4 |       40,0 |       38,7 |       38,8 |       39,3 |      39,2 | 
 +^ BC                |        109 |       98,3 |       54,6 |       43,7 |       43,7 |       43,7 |       32,8 |       16,4 |       16,4 |       15,3 |       15,3 |       15,3 |       16,1 |       19,6 |       16,3 |       15,2 |       15,8 |      14,8 | 
 +^ PM<sub>2.5</sub>  |        352 |        317 |        176 |        141 |        141 |        141 |        106 |       52,9 |       52,9 |       49,3 |       49,3 |       49,3 |       51,9 |       63,2 |       52,6 |       49,0 |       51,0 |      47,9 | 
 +^ PM<sub>10</sub>          377 |        339 |        189 |        151 |        151 |        151 |        113 |       56,6 |       56,6 |       52,8 |       52,8 |       52,7 |       55,5 |       67,7 |       56,3 |       52,4 |       54,6 |      51,2 | 
 +^ TSP                      377 |        339 |        189 |        151 |        151 |        151 |        113 |       56,6 |       56,6 |       52,8 |       52,8 |       52,7 |       55,5 |       67,7 |       56,3 |       52,4 |       54,6 |      51,2 | 
 +^ CO                |        136 |        136 |        136 |        136 |        136 |        136 |        136 |        136 |        136 |        136 |        136 |        136 |        142 |        158 |        148 |        139 |        142 |       137 | 
 +<sup>1</sup> due to lack of better information: similar EF are applied for fossil and biodiesel \\ 
 +<sup>2</sup> ratio PM<sub>2.5</sub> : PM<sub>10</sub> : TSP derived from the tier1 default EF as provided in [(EMEPEEA2019)]   \\ 
 +<sup>3</sup> estimated from a BC-fraction of 0.31 as provided in [(EMEPEEA2019)], chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii Navigation, Table 3-2
  
-For information on the **emission factors for heavy-metal and POP exhaust emissions**please refer to [[[ appendix2.3-HM-from-mobile-sources | Appendix 2.3 - Heavy Metal (HMexhaust emissions from mobile sources]]] and [[[ appendix2.4-POPs-from-mobile-sources | Appendix 2.4 - Persistent Organic Pollutant (POPexhaust emissions from mobile sources ]]].+<WRAP center round info 100%> 
 +With respect to the emission factors applied for particulate matter, given the circumstances during test-bench measurementscondensables are most likely included at least partly((During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensationOn the contrary, smaller dillution (higher number of primary particles acting as condensation germstogether with higher pressures increase the likeliness of condensationSo over-all condensables are very likely to occur but different to real-world conditions.)
 +</WRAP>
  
-[!--+<WRAP center round info 100%> 
 +For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to Appendix 2.3 Heavy Metal (HM) exhaust emissions from mobile sources and Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources. 
 +</WRAP>
  
-+ __Discussion of emission trends__+===== Discussion of emission trends =====
  
-This sub-category is **not considered separately in the key category analysis**.+<WRAP center round info 60%> 
 +As only NFR 1.A.5.b as a whole is taken into account within the key category analysis, this country-specific sub-sector is not considered separately. 
 +</WRAP>
  
-Due to the application of very several tier1 emission factors, most emission trends reported for this sub-category only reflect the trend in fuel deliveries. +===== Recalculations =====
-Therefore, the fuel-consumption dependend trends in emission estimates are only influenced by the annual fuel mix.+
  
-++ Selected main pollutants: NO,,x,,+With both **activity data** and **emission factors** remaining unrevisedno recalculations took place with this submission.
  
-[[gallery size="medium"]] +<WRAP center round info 60%> 
-: 1A5biii_EM(NOx).png +For pollutant-specific information on recalculated emission estimates for Base Year and 2018, please see the pollutant specific recalculation tables following chapter [[general:recalculations:start | 8.1 - Recalculations]]. 
-[[/gallery]]+</WRAP>
  
-++ Sulphur dioxide and particulate matter+===== Uncertainties =====
  
-As fuel sulphur content underlies strict legislation, the trends of these directly related emissions reflect the outcome of ever lower fuel sulphur contents.+See [[sector:energy:fuel_combustion:other_including_military:military_transport| superordinate chapter]] on NFR 1.A.5.b.
  
-[[gallery size="medium"]] +===== Planned improvements ===== 
-: 1A5biii_EM(SOx).png +
-: 1A5biii_EM(PM).png +
-[[/gallery]] +
- +
---] +
- +
-+ __Recalculations__ +
- +
-The small changes in the **activity data** applied result solely from a revised biofuel share for biodiesel in 2017: +
- +
-__Table 4: Revised fuel consumption data 2017, in terajoules__ +
-|| ||=  **TOTAL** ||=  **Diesel Oil** ||=  **Biodiesel** ||= +
-||~ Submission 2020 ||> 500.2 ||> 489.3 ||> 10.9 ||= +
-||~ Submission 2019 ||> 500.6 ||> 489.3 ||> 11.3 ||= +
-||~ absolute change ||> -0.40 ||> 0.00  ||> -0.40 ||= +
-||~ relative change ||> -0.08% ||> 0.00% ||> -3.57% ||= +
- +
-In contrast, all (annual) country-specific **emission factors** remain unaltered. +
- +
- +
-> For more pollutant-specific information on **recalculated emission estimates for Base Year and 2017**, please see the pollutant specific recalculation tables following chapter [[[recalculations | 8.1 - Recalculations]]]. +
- +
-+ __Uncertainties__ +
- +
-See [[[1-a-5-b-other-military-mobile-combustion | superordinate chapter]]] on NFR 1.A.5.b. +
- +
-+ __Planned improvements__ +
  
 A **routine revision** of the underlying model is planned for the next annual submission. A **routine revision** of the underlying model is planned for the next annual submission.
  
------- 
-[[bibliography]] 
  
-: 1 : Deichnik (2019): Deichnik, K.: Aktualisierung und Revision des Modells zur Berechnung der spezifischen Verbräuche und Emissionen des von Deutschland ausgehenden Seeverkehrs. from Bundesamts für Seeschifffahrt und Hydrographie (BSH); Hamburg, 2019+[(DEICHNIK2020> Deichnik (2020): Deichnik, K.: Aktualisierung und Revision des Modells zur Berechnung der spezifischen Verbräuche und Emissionen des von Deutschland ausgehenden Seeverkehrs. from Bundesamts für Seeschifffahrt und Hydrographie (BSH); Hamburg, 2020.)] 
-: 2 : EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook 2019, Copenhagen, 2019. +[(EMEPEEA2019> EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook 2019, Copenhagen, 2019.)] 
-: 3 : Rentz et al., 2008: Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des Umweltbundesamtes, FKZ 205 67 444, UBA Texte | 01/2008, January 2008 - URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer +[(RENTZ2008> Rentz et al., 2008: Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des Umweltbundesamtes, FKZ 205 67 444, UBA Texte | 01/2008, January 2008 - URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer )]
-[[/bibliography]]+