meta data for this page
  •  

This is an old revision of the document!


1.A.5.b iii - Military Navigation

Short description

In sub-category 1.A.5.b iii - Other, Mobile (including Military) emissions from military navigation are reported.

Method AD EF Key Category Analysis
T1, T2 NS, M D, M, CS, T1, T3 see superordinate chapter

Methodology

Activity Data

Primary fuel data for national military waterborne activities is included in NEB lines 6 ('International Deep-Sea Bunkers') and 64 ('Coastal and Inland Navigation') for IMO and non-IMO ships respectively.

The annual shares used within NFR 1.A.5.b iii are therefore calculated within (Deichnik, K. (2019)), where ship movement data (AIS signal) allows for a bottom-up approach providing the needed differentiation.

Table 1: Annual fuel consumption, in terajoules

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Diesel Oil 983 665 563 410 383 366 360 349 347 330 313 302 332 273 359 489 436 558
Biodiesel NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO
Heavy Fuel Oil NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO
Ʃ 1.A.5.b iii 983 665 563 419 394 382 378 373 369 351 334 319 351 286 370 500 434 558

source: Deichnik, K. (2019): BSH model 1)

gallery size="medium" : 1A5biii_AD.png : 1A5biii_AD_bio.png gallery

Emission factors

The emission factors applied here, are derived from different sources and therefore are of very different quality.

For the main pollutants, country-specific implied values are used, that are based on tier3 EF included in (Deichnik, K. (2019)) 2) which mainly relate on values from the EMEP/EEA guidebook 2019 3). These modelled IEFs take into account the ship specific information derived from AIS data as well as the mix of fuel-qualities applied depending on the type of ship and the current state of activity.

Table 2: Annual country-specific implied emission factors1 for diesel fuels, in kg/TJ

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
NH3 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,32 0,33 0,33 0,33 0,33
NMVOC 41,4 41,4 41,4 41,4 41,4 41,4 41,4 41,4 41,4 41,4 41,4 41,6 41,1 47,7 37,4 38,0 39,1 38,2
NOx 1.106 1.106 1.106 1.106 1.106 1.106 1.106 1.106 1.106 1.106 1.106 1.105 1.098 1.011 1.119 1.124 1.117 1.134
SOx 466 419 233 186 186 186 140 69,8 69,8 65,2 59,4 55,9 53,4 40,0 38,7 38,8 39,3 39,2
BC 109 98,3 54,6 43,7 43,7 43,7 32,8 16,4 16,4 15,3 15,3 15,3 16,1 19,6 16,3 15,2 15,8 14,8
PM2.5 352 317 176 141 141 141 106 52,9 52,9 49,3 49,3 49,3 51,9 63,2 52,6 49,0 51,0 47,9
PM10 377 339 189 151 151 151 113 56,6 56,6 52,8 52,8 52,7 55,5 67,7 56,3 52,4 54,6 51,2
TSP 377 339 189 151 151 151 113 56,6 56,6 52,8 52,8 52,7 55,5 67,7 56,3 52,4 54,6 51,2
CO 136 136 136 136 136 136 136 136 136 136 136 136 142 158 148 139 142 137

1 due to lack of better information: similar EF are applied for fossil and biodiesel
2 ratio PM2.5 : PM10 : TSP derived from the tier1 default EF as provided in 4) 3 estimated from a BC-fraction of 0.31 as provided in 5), chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii Navigation, Table 3-2

With respect to the emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly.footnote During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions. 1)

[!–

This sub-category is not considered separately in the key category analysis.

Due to the application of very several tier1 emission factors, most emission trends reported for this sub-category only reflect the trend in fuel deliveries. Therefore, the fuel-consumption dependend trends in emission estimates are only influenced by the annual fuel mix.

++ Selected main pollutants: NO,,x,,

gallery size="medium" : 1A5biii_EM(NOx).png gallery

++ Sulphur dioxide and particulate matter

As fuel sulphur content underlies strict legislation, the trends of these directly related emissions reflect the outcome of ever lower fuel sulphur contents.

gallery size="medium" : 1A5biii_EM(SOx).png : 1A5biii_EM(PM).png gallery

–]

Recalculations

The small changes in the activity data applied result solely from a revised biofuel share for biodiesel in 2017:

Table 4: Revised fuel consumption data 2017, in terajoules

= TOTAL = Diesel Oil = Biodiesel
~ Submission 2020 > 500.2 > 489.3 > 10.9
~ Submission 2019 > 500.6 > 489.3 > 11.3
~ absolute change > -0.40 > 0.00 > -0.40
~ relative change > -0.08% > 0.00% > -3.57%

In contrast, all (annual) country-specific emission factors remain unaltered.

For pollutant-specific information on recalculated emission estimates for Base Year and 2018, please see the pollutant specific recalculation tables following chapter 8.1 - Recalculations.

Uncertainties

See superordinate chapter on NFR 1.A.5.b.

Planned improvements

A routine revision of the underlying model is planned for the next annual submission.


bibliography

: 1 : Deichnik (2019): Deichnik, K.: Aktualisierung und Revision des Modells zur Berechnung der spezifischen Verbräuche und Emissionen des von Deutschland ausgehenden Seeverkehrs. from Bundesamts für Seeschifffahrt und Hydrographie (BSH); Hamburg, 2019. : 2 : EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook 2019, Copenhagen, 2019. : 3 : Rentz et al., 2008: Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des Umweltbundesamtes, FKZ 205 67 444, UBA Texte | 01/2008, January 2008 - URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer bibliography


1) (bibcite 1)
2) (bibcite 1)
3) (bibcite 2)
4) (bibcite 2)
5) (bibcite 2)
1)
During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions.