1.A3.b ii - Transport: Road Transport: Light Duty Vehicles

Short description

In sub-category 1.A.3.b ii - Road Transport: Light Duty Vehicles emissions from fuel combustion in Light Duty Vehicles (LDVs) are reported.

Category Code Method AD EF
1.A.3.b ii T1, T3 NS, M CS, M, D
Key Category SO2 NOx NH3 NMVOC CO BC Pb Hg Cd PCDD/F PAH HCB TSP PM10 PM2.5
1.A.3.b ii -/- L/- -/- -/- -/- L/T -/- -/- -/- -/- -/- - -/- -/T L/T

Click to view Legend

Click to hide Legend

T = key source by Trend L = key source by Level

Methods
D Default
RA Reference Approach
T1 Tier 1 / Simple Methodology *
T2 Tier 2*
T3 Tier 3 / Detailed Methodology *
C CORINAIR
CS Country Specific
M Model
* as described in the EMEP/CORINAIR Emission Inventory Guidebook - 2007, in the group specific chapters.
AD - Data Source for Activity Data
NS National Statistics
RS Regional Statistics
IS International Statistics
PS Plant Specific data
AS Associations, business organisations
Q specific questionnaires, surveys
EF - Emission Factors
D Default (EMEP Guidebook)
C Confidential
CS Country Specific
PS Plant Specific data

Methodology

Activity data

Specific consumption data for light-duty vehicles (LDV) are generated within TREMOD 1). - The following table provides an overview of annual amounts of fuels consumed by LDV in Germany.

Table 1: Annual fuel consumption of light duty vehicles, in terajoules

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Diesel oil 25.715 69.182 97.262 104.706 101.229 101.076 104.483 105.776 105.371 108.404 106.812 112.127 121.134 128.288 136.814 145.516 145.785 150.608
Gasoline 28.187 17.111 14.466 9.216 8.374 7.723 6.825 6.481 6.090 5.877 5.417 5.349 5.602 5.552 5.679 5.936 6.044 6.407
CNG 0 0 0 340 484 706 927 1.127 1.217 1.266 1.177 952 1.022 1.085 868 779 762 727
Biodiesel 0 108 1.078 6.997 12.205 13.523 10.410 8.545 8.078 7.564 7.538 6.650 7.444 7.017 7.253 7.768 8.474 8.575
Biogasoline 0 0 0 63 121 104 130 185 235 241 240 229 244 241 247 250 272 276
Biogas 0 0 0 0 0 0 0 0 0 0 168 188 258 183 204 242 205 332
Ʃ 1.A.3.b ii 53.902 86.401 112.806 121.322 122.412 123.133 122.776 122.115 120.992 123.351 121.353 125.495 135.703 142.366 151.065 160.491 161.541 166.925

For information on mileage, please refer to sub-chapters on emissions from tyre & brake wear and road abrasion.

Emission factors

The majority of emission factors for exhaust emissions from road transport are taken from the 'Handbook Emission Factors for Road Transport' (HBEFA, version 4.1) 2) where they are provided on a tier3 level mostly and processed within the TREMOD software used by the party 3).

However, it is not possible to present these highly specific tier3 values here in a comprehendible way .

With respect to the country-specific emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly. 1)

For heavy-metal (other then lead from leaded gasoline) and PAH exhaust-emissions, default emission factors from the 2019 EMEP Guidebook (EMEP/EEA, 2019) 4) have been applied. Regarding PCDD/F, a tier1 EF from (Rentz et al., 2008) 5) is used instead.

Table 3: tier1 emission factors

Pb Cd Hg As Cr Cu Ni Se Zn B[a]P B[b]F B[k]F I[1,2,3-c,d]p PAH 1-4 PCDD/F
[g/TJ] [mg/TJ] [µg/km]
Diesel oil 0.012 0.001 0.123 0.002 0.198 0.133 0.005 0.002 0.419 498 521 275 493 1.788
Biodiesel1 0.013 0.001 0.142 0.003 0.228 0.153 0.005 0.003 0.483 575 601 317 569 2.062
Gasoline fuels 0.037 0.005 0.200 0.007 0.145 0.103 0.053 0.005 0.758 96 140 69 158 464
CNG2 & biogas3 NE NE NE NE NE NE NE NE NE NE NE NE NE NE
LPG4 NE NE NE NE NE NE NE NE NE 4.35 0.00 4.35 4.35 13.0
all fuels 0.000006

1 values differ from EFs applied for fossil diesel oil to take into account the specific NCV of biodiesel
2 no specific default available from 6); value derived from CNG powered busses
3 no specific default available from 7); values available for CNG also applied for biogas
4 no specific default available from 8); value derived from LPG powered passenger cars

Table: Outcome of Key Category Analyis

for: NOx BC PM10 PM2.5
by: Level Level & Trend -/T L/T

Nitrogen oxides

NOx emissions increased steadily until 2002 following the shift to diesel engines. During the last ten years, emissions decline steadily due to catalytic-converter use and engine improvements resulting from ongoing tightening of emissions laws and improved fuel quality.

Ammonia and sulphur dioxide

As for the entire road transport sector, the trends for sulphur dioxide and ammonia exhaust emissions from passenger cars show charcteristics very different from those shown above.

Here, the strong dependence on increasing fuel qualities (sulphur content) leads to an cascaded downward trend of emissions , influenced only slightly by increases in fuel consumption and mileage.

For ammonia emissions the increasing use of catalytic converters in gasoline driven cars in the 1990s lead to a steep increase whereas both the technical development of the converters and the ongoing shift from gasoline to diesel cars resulted in decreasing emissions in the following years.

Particulate matter & Black carbon

Starting in the middle of the 1990s, a so-called “diesel boom” began, leading to a switch from gasoline to diesel powered passenger cars. As the newly registered diesel cars had to meet the EURO2 standard (in force since 1996/'97) with a PM limit value less than half the EURO1 value, the growing diesel consumption was overcompensated qickly by the mitigation technologies implemented due to the new EURO norm. During the following years, new EURO norms came into force. With the still ongoing “diesel boom” those norms led to a stabilisation (EURO3, 2000/'01) of emissions and to another strong decrease of PM emissions (EURO4, 2005/'06), respectively. Over-all, the increased consumption of diesel in passenger cars was overastimated by the implemented mitigation technologies.

Recalculations

Compared to submission 2020, recalculations were carried out due to a routine revision of the TREMOD software and the revision of several National Energy Balances (NEB).

Here, activity data were revised within TREMOD.

Table 4: Revised fuel consumption data, in terajoules

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Diesel oil
Submission 2021 25.715 69.182 97.262 104.706 101.229 101.076 104.483 105.776 105.371 108.404 106.812 112.127 121.134 128.288 136.814 145.516 145.785
Submission 2020 41.153 89.124 116.634 121.822 105.582 105.122 108.097 109.289 108.711 111.764 110.034 115.424 118.957 126.159 134.558 143.170 143.928
absolute change -15.437 -19.942 -19.372 -17.116 -4.353 -4.046 -3.614 -3.513 -3.340 -3.361 -3.222 -3.297 2.177 2.129 2.256 2.346 1.857
relative change -37,5% -22,4% -16,6% -14,1% -4,12% -3,85% -3,34% -3,21% -3,07% -3,01% -2,93% -2,86% 1,83% 1,69% 1,68% 1,64% 1,29%
Biodiesel
Submission 2021 0 108 1.078 6.997 12.205 13.523 10.410 8.545 8.078 7.564 7.538 6.650 7.444 7.017 7.253 7.768 8.474
Submission 2020 0 139 1.292 8.112 12.701 14.020 10.724 8.761 8.273 7.730 7.704 6.789 7.248 6.839 7.082 7.593 8.307
absolute change 0 -31,1 -215 -1.115 -496 -497 -315 -215 -194 -167 -166 -140 196 179 172 175 167
relative change #DIV/0! -22,4% -16,6% -13,7% -3,90% -3,54% -2,94% -2,46% -2,35% -2,16% -2,16% -2,06% 2,70% 2,61% 2,42% 2,31% 2,01%
Gasoline
Submission 2021 28.187 17.111 14.466 9.216 8.374 7.723 6.825 6.481 6.090 5.877 5.417 5.349 5.602 5.552 5.679 5.936 6.044
Submission 2020 31.432 19.932 16.561 10.726 9.665 8.888 7.792 7.367 6.899 6.646 6.117 6.022 5.989 6.042 6.145 6.354 6.442
absolute change -3.245 -2.820 -2.094 -1.510 -1.291 -1.165 -966 -887 -809 -769 -700 -674 -387 -490 -466 -418 -398
relative change -10,3% -14,1% -12,6% -14,1% -13,4% -13,1% -12,4% -12,0% -11,7% -11,6% -11,4% -11,2% -6,47% -8,11% -7,58% -6,58% -6,18%
Biogasoline
Submission 2021 63,3 121 104 130 185 235 241 240 229 244 241 247 250 272
Submission 2020 73,7 139 120 149 210 267 272 271 258 260 262 267 268 290
absolute change -10,4 -18,6 -15,7 -18,5 -25,3 -31,3 -31,5 -31,0 -28,9 -16,8 -21,3 -20,2 -17,6 -17,9
relative change -14,1% -13,4% -13,1% -12,4% -12,0% -11,7% -11,6% -11,4% -11,2% -6,47% -8,11% -7,58% -6,58% -6,18%
CNG
Submission 2021 340 484 706 927 1.127 1.217 1.266 1.177 952 1.022 1.085 868 779 762
Submission 2020 341 485 707 928 1.128 1.218 1.267 1.179 953 981 1.073 858 771 900
absolute change -0,81 -1,15 -1,50 -1,60 -1,57 -1,54 -1,53 -1,59 -1,09 40,9 11,9 9,76 8,12 -138
relative change -0,24% -0,24% -0,21% -0,17% -0,14% -0,13% -0,12% -0,13% -0,11% 4,17% 1,11% 1,14% 1,05% -15,4%
Biogas
Submission 2021 168 188 258 183 204 242 205
Submission 2020 168 189 247 181 202 240 210
absolute change -0,23 -0,21 10,31 2,01 2,29 2,53 -5,45
relative change -0,13% -0,11% 4,17% 1,11% 1,14% 1,05% -2,59%

Due to the variety of tier3 emission factors applied, it is not possible to display any changes in these data sets in a comprehendible way.

For more information on recalculated emission estimates reported for Base Year and 2018, please see the pollutant-specific recalculation tables following chapter 8.1 - Recalculations.

Planned improvements

Besides a routine revision of the underlying model, no specific improvements are planned.

FAQs


1), 3) Knörr et al. (2020a): Knörr, W., Heidt, C., Gores, S., & Bergk, F.: ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Fortschreibung des Daten- und Rechenmodells: Energieverbrauch und Schadstoffemissionen des motorisierten Verkehrs in Deutschland 1960-2035, sowie TREMOD, im Auftrag des Umweltbundesamtes, Heidelberg & Berlin, 2020.
2) Keller et al. (2017): Keller, M., Hausberger, S., Matzer, C., Wüthrich, P., & Notter, B.: Handbook Emission Factors for Road Transport, version 4.1 (Handbuch Emissionsfaktoren des Straßenverkehrs 4.1) URL: http://www.hbefa.net/e/index.html - Dokumentation, Bern, 2017.
4), 6), 7), 8) EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook 2019; https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view; Copenhagen, 2019.
5) Rentz et al., 2008: Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des Umweltbundesamtes, FKZ 205 67 444, UBA Texte | 01/2008, January 2008 - URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer
1)
During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions.