# 1.B.1 - Solid Fuels



| <b>Category Code</b> | Method      |     |     |       | AD  |     |    |    | EF |      |     |     |     |              |       |
|----------------------|-------------|-----|-----|-------|-----|-----|----|----|----|------|-----|-----|-----|--------------|-------|
| 1.B.1.a              | T2, M       |     |     |       | AS  |     |    |    | CS |      |     |     |     |              |       |
| 1.B.1.b              | T2, T3      |     |     | AS    |     |     |    | CS |    |      |     |     |     |              |       |
| Key Category         | <b>SO</b> 2 | NO× | ΝН₃ | NMVOC | СО  | BC  | Pb | Hg | Cd | Diox | PAH | HCB | TSP | <b>PM</b> 10 | PM2 5 |
| 1.B.1.a              | -           | -   | -   | -/-   | -   | -   | -  | -  | -  | -    | -   | -   | -/- | -/-          | -/-   |
| 1.B.1.b              | -/-         | -/- | -/- | -/-   | -/- | -/- | -  | -  | -  | -/-  | L/T | -   | L/T | -/-          | -/-   |

The source category Solid fuels (1.B.1) consists of two sub-source subcategories – the source subcategory Coal mining (1.B.1.a) and the source subcategory Coal transformation (1.B.1.b). This chapter discusses fugitive emissions from coal mining, coal handling, including door leakages from coke ovens and quenching (emissions from the furnace are covered by category 1.A.1.c), and emissions from the beneficiation of solid fuels. In the mining sector, a distinction is made between open-pit mines, in which raw materials are extracted from pits open to the surface, and closed-pit mines, in which seams are mined underground. In Germany, hard coal used to be mined in closed-pits only (until 2018), while lignite is mined in four coal fields since 2003 with the open-pit method only.

#### Lignite production

The activity rates for lignite production have been taken from the *Statistik der Kohlenwirtschaft*'s website (in German only) <sup>1)</sup>. Extracted coal is moved directly to processing and to power stations. The emission factors used for calculating emissions from lignite production (TSP, PM<sub>10</sub> and PM<sub>2.5</sub>) already include possible emissions from transport and storage. They are taken from a 2006 research project <sup>2)</sup> and the CEPMEIP-Database <sup>3)</sup>.



| Activity data         | Unit  | 1990  | 1995  | 200  | 0 20 | 05    | 2010 | 2015 | 2018 | 2019 |
|-----------------------|-------|-------|-------|------|------|-------|------|------|------|------|
| Extraction of lignite | Mt    | 357   | / 193 | 16   | 8 1  | 178 1 |      | 178  | 166  | 131  |
| Source of emissio     | tor S | ubsta | nce l | Jnit | V    | alue  |      |      |      |      |
| Extraction of lignite |       |       | TSP   |      | kg/t | 0.0   | 5086 |      |      |      |
| Extraction of lignite |       |       | PM10  | ) I  | kg/t | 0.025 |      |      |      |      |
| Extraction of lignite |       |       | PM2.  | 5 I  | kg/t | 0.0   | 0375 |      |      |      |

#### Hard coal coke production

The activity rates for hard coal coke production have been taken from the *Statistik der Kohlenwirtschafts*'s website (in German only) [9]. The emission factors for hard coal coke production have been obtained from the research project "Emission factors for the iron and steel industry, for purposes of emissions reporting" ("Emissionsfaktoren zur Eisen- und Stahlindustrie für die Emissionsberichterstattung") <sup>4)</sup>.

| Source                       | Substance       | Unit | Value    |
|------------------------------|-----------------|------|----------|
| Production of hard-coal coke | CO              | kg/t | 0.015    |
| Production of hard-coal coke | NH₃             | kg/t | 0.000243 |
| Production of hard-coal coke | NMVOC           | kg/t | 0.096    |
| Production of hard-coal coke | SO <sub>2</sub> | kg/t | 0.004    |
| Production of hard-coal coke | TSP             | kg/t | 0.011    |
| Production of hard-coal coke | PM10            | kg/t | 0.004    |
| Production of hard-coal coke | PM2.5           | kg/t | 0.004    |

There are many potential sources of PAH emissions from coking plants. The dominant emission sources are leakages from coke oven doors and from charging operations. As there is limited data available on PAH emissions, the uncertainties of the estimated emission factors are very high. It should also be taken into account that emissions from coke production greatly vary between different coke production plants. The emission factors for benzo[a]pyrene and mixed PAH have been revised by research projects in 2010 <sup>5)6)</sup>. Split factors for Black Carbon (BC) are based on the EMEP Guidebook 2016 <sup>7)</sup>.

#### **Charcoal production**

Small quantities of charcoal are produced in Germany – by one major charcoal-factory operator and in a number of demonstration charcoal kilns. The pertinent quantities are determined by the Federal Statistical Office and are subject to confidentiality requirements. The emission factors were obtained from US EPA 1995<sup>8)</sup>.

Use of charcoal and barbecue coal (includes lignite briquetts) is reported under 2.G.4. The production of lignete briquetts is reported under 1.B.1.b.

#### **Decommissioned hard-coal mines**

NMVOC Emissions from decommissioned hard-coal mines play a role in this sub- source subcategory. When a hard-coal mine is decommissioned, mine gas can escape from neighbouring rock, and from coal remaining in the mine, into the mine's network of shafts and passageways. Since the mine is no longer artificially ventilated, the mine gas collects and can then reach the surface via gas pathways in the overlying rock or via the mine's own shafts and passageways. Such mine gas was long seen primarily as a negative environmental factor. Recently, increasing attention has been given to the gas' positive characteristics as a fuel (due to its high methane content, it is used for energy recovery). In the past, use of mine gas was rarely cost-effective. This situation changed fundamentally in 2000 with the Renewable Energy Sources Act (EEG). Although mine gas is a fossil fuel in finite supply, its use supports climate protection, and thus the gas was included in the EEG. The Act requires network operators to accept, and provide specified compensation for, electricity generated with mine gas and fed into the grid. The NMVOC emissions from decommissioned hard-coal mines have been calculated in the research project "Potential for release and utilisation of mine gas" ("Potential zur Freisetzung und Verwertung von Grubengas") <sup>9</sup>. The relevant calculations were carried out for all mining-relevant deposits in Germany.

| Source of emission factor      | Substance | unit  | Value    |
|--------------------------------|-----------|-------|----------|
| decommissioned hard-coal mines | NMVOC     | kg/m³ | 0.001599 |

## **Planned improvements**

Currently no improvements are planned.

### References

<sup>1)</sup> Statistik der Kohlenwirtschaft, 2019. External Link (last pageview: March 2021)

<sup>2)</sup> Federal Environment Agency research project No. 204 42 202/2 "Emissionen und

Maßnahmenanalyse Feinstaub 2000-2020", published in 2007 External Link

<sup>3)</sup> Co-ordinated European Programme on Particulate Matter Emission Inventories, Projections and Guidance (CEPMEIP) External Link

<sup>4)</sup> Hensmann et al. 2011

<sup>5)</sup> Federal Environment Agency and DFIU research project "Anpassung der deutschen Methodik zur rechnerischen Emissionsermittlung an internationale Richtlinien, Teilbericht Prioritäre Quellen", 2010 (not available online)

<sup>6)</sup> Federal Environment Agency and BFI research project No. 3707 42 301 "Emissionsfaktoren zur Eisen- und Stahlindustrie für die Emissionsberichterstattung", 2011 External Link

<sup>7)</sup> EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016; published in 2016 External Link (last pageview: Dec 2016)

<sup>8)</sup> Neulicht, R. (1995): Emission Factor Documentation for AP-42 Section 10.7 "Charcoal". External Link <sup>9)</sup> Meiners, H. (2014): Potential zur Freisetzung und Verwertung von Grubengas. Mokany, K., Raison, R., & Prokushkin, A. S. (2006): Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology, 12(1), 84-96.