2.B.10.a - Other Chemicals

2.B.10.a - Other Chemicals

Short description

In sub-category 2.B.10.a - Other Chemicals, emissions from the production of organic chemicals, titanium dioxide, sulphuric acid, carbon black, fertilizers and from the chlor-alkali industry are reported. Relevant pollutants are NMVOC, CO, PCDD/F, SO_x, NH₃, PM_{2.5}, PM₁₀, TSP and Hg.

Table 1: Overview of emission sources covered

Emission sources	Pollutants	Method	AD	EF	Key Category
Large Volume Organic chemicals	NMVOC (PCDD/F only for Ethylene Dichloride)	T2	NS	CS	
Carbon Black	CO, SO ₂ , TSP, PM ₁₀ , PM _{2.5}	T2	NS	D, CS	
Fertilizers	TSP, PM ₁₀ , PM _{2.5} , NH ₃	T2	-	D, CS	
Sulphuric acid	SO ₂	T2	NS	CS	L&T
Chlor-alkali industry	Hg	T3	PS	-	Т

T = key source by Trend L = key source by Level

Methods	
D	Default
RA	Reference Approach
T1	Tier 1 / Simple Methodology *
T2	Tier 2*
Т3	Tier 3 / Detailed Methodology *
С	CORINAIR
CS	Country Specific
M	Model

st as described in the EMEP/CORINAIR Emission Inventory Guidebook - 2007, in the group specific chapters.

ΑD	- Data Source for Activity Data
NS	National Statistics
RS	Regional Statistics
IS	International Statistics
PS	Plant Specific data
AS	Associations, business organisations
Q	specific questionnaires, surveys

EF	- Emission Factors
D	Default (EMEP Guidebook
С	Confidential
CS	Country Specific
PS	Plant Specific data

2.B.10.a - Other Chemicals 2/6

Methodology

Large Volume Organic chemicals

The annual production volumes for all large volume organic chemicals are extracted from national production statistics ¹⁾) by the Federal Statistical Office.

[Jens: Text einfügen]

<u>These chemicals</u> comprise:

- Acrylonitrile
- Ethylene
- Ethylbenzene
- Ethylene Dichloride
- Ethylene Oxide
- Formaldehyde (Methanal)
- Methanol
- Phthalic Anhydride
- Propene
- Styrene
- Vinyl Chloride
- Polyethylene (LD/HD)
- Polypropylene
- Polystyrene
- Polyvinyl Chloride
- Styrene Copolymeres

The emission factors for the production of organic chemicals as shown in table 2 and 3 are derived from best reference documents polymers and LVOC mostly for the early years. For later years, plant-specific data on an aggregated level were used.

[Jens: Text einfügen]

Table 2: national NMVOC emission factors for producing organic chemicals, in kg/t

Product	Acrylonitrile	Ethylbenzene	Ethylene	Ethylene Dichloride	Ethylene Oxide	Formaldehyde (Methanal)	Mothanol	Phthalic Anhydride	Propene		Vinyl Chloride
from 1990-1994	5	0.6	5	С	5	5	0.04	5	2.5	0.02	0.2
1995	0.07	0.02	0.4	С	0.06	0.02	0.04	0.2	0.2	0.02	0.2
1996	0.05	0.015	0.3	С	0.045	0.015	0.04	0.15	0.15	0.02	0.15
1997	0.05	0.015	0.3	С	0.045	0.015	0.04	0.15	0.15	0.02	0.15
1998	0.04	0.012	0.25	С	0.04	0.012	0.04	0.12	0.12	0.02	0.12
1999	0.04	0.012	0.25	С	0.04	0.012	0.04	0.12	0.12	0.02	0.12
from 2000	0.035	0.01	0.2	С	0.03	0.01	0.04	0.1	0.1	0.02	0.1

Table 3: national NMVOC emission factors for producing polymers, in kg/t

products	Polyethylene (PE)	Polypropylen (PP)	Polystyrene (PS)	Polyvinyl Chloride (PVC)	Styrene Copolymeres	
----------	-------------------	-------------------	---------------------	--------------------------------	------------------------	--

2.B.10.a - Other Chemicals 3/6

products	Polyethy	rlene (PE)	(DD) Polystyrene		Polyvinyl Chloride (PVC)	Styrene Copolymeres
	Low density (LD)	High density (HD)				
from 1990 to 1994	8	6	8	1	0.25	5
1995	2.2	1	1	0.6	0.25	0.6
1996	1.6	0.75	0.75	0.4	0.25	0.5
1997	1.6	0.75	0.75	0.4	0.25	0.5
1998	1.3	0.6	0.6	0.32	0.25	0.4
1999	1.3	0.6	0.6	0.32	0.25	0.4
from 2000	1.1	0.5	0.5	0.27	0.14	0.3

Carbon Black

The figures for carbon black production in the new German Länder in 1990 were taken from the Statistical Yearbook (Statistisches Jahrbuch) for the Federal Republic of Germany ²⁾; the figures for 1991 and 1992 were estimated, due to confidentiality requirements. The other data for carbon-black production as of 1990 were obtained from national production statistics ³⁾).

From 2005 onwards, Germany uses activity data calculated from the CO2 emissions of the Emission Trading System (ETS), delivered from the German emission trading authority (DEHSt), and the default CO_2 emission factor from the IPCC Guidelines 2006 for carbon black production. A comparison of the statistical data and the emission trading data leads to the result, that the statistical data is most probably overestimated.

Table 4: Emission factors of carbon black in Germany, in kg/t

Pollutant	СО	SO2	TSP	PM10	PM2.5
1990	4.80	19.16	0.28		
1991	4.60	19.01	0.28		
1992	4.40	18.50	0.27		
1993	4.20	18.00	0.26		
1994	4.00	17.50	0.25		
1995	3.75	17.00	0.25	0.23	0.12
1996	3.50	16.00	0.25	0.23	0.12
1997	3.25	15.00	0.25	0.23	0.12
1998	3.00	14.00	0.25	0.23	0.12
1999	2.90	13.40	0.25	0.23	0.12
2000	2.80	12.80	0.25	0.23	0.12
2001	2.70	12.54	0.25	0.23	0.12
2002	2.65	12.28	0.25	0.23	0.12
2003	2.60	12.00	0.25	0.23	0.12
2004	2.55	11.70	0.25	0.23	0.12
2005	2.50	11.50	0.25	0.23	0.12
2006	2.50	11.20	0.24	0.22	0.12
2007	2.50	10.90	0.23	0.21	0.11

2.B.10.a - Other Chemicals 4/6

							_				
2008	2.50	10	0.60	0.22	0.2	0	0.	11			
2009	2.50	10	0.30	0.21	0.1	9	0.	10			
from 2010	2.50	10	0.00	0.20	0.1	8	0.	10			
Pollutant	СО		= S	0,,2	,, =	TS	Р	= P	M,,10,,	=	PM,,2.5,,
1990	4.80		> 1	9.16	>	0.2	28	>		>	
1991	4.60		> 1	9.01	>	0.2	28	>		>	
1992	4.40		> 1	8.50	>	0.2	27	>		>	
1993	4.20		> 1	8.00	>	0.2	26	>		>	
1994	4.00		> 1	7.50	>	0.2	25	>		>	
1995	> 3.	75	> 1	7.00	>	0.2	25	> 0	.23	>	0.12
1996	> 3.!	50	> 1	6.00	>	0.2	25	> 0	.23	>	0.12
1997	> 3.2	25	> 1	5.00	>	0.2	25	> 0	.23	>	0.12
1998	> 3.0	00	> 1	4.00	>	0.2	25	> 0	.23	>	0.12
1999	> 2.9	90	> 1	3.40	>	0.2	25	> 0	.23	>	0.12
2000	> 2.8	30	> 1	2.80	>	0.2	25	> 0	.23	>	0.12
2001	> 2.	70	> 1	2.54	>	0.2	25	> 0	.23	>	0.12
2002	> 2.0	65	> 1	2.28	>	0.2	25	> 0	.23	>	0.12
2003	> 2.0	50	> 1	2.00	>	0.2	25	> 0	.23	>	0.12
2004	> 2.!	55	> 1	1.70	>	0.2	25	> 0	.23	>	0.12
2005	> 2.!	50	> 1	1.50	>	0.2	25	> 0	.23	>	0.12
2006	> 2.!	50	> 1	1.20	>	0.2	24	> 0	.22	>	0.12
2007	> 2.!	50	> 1	0.90	>	0.2	23	> 0	.21	>	0.11
2008	> 2.!	50	> 1	0.60	>	0.2	22	> 0	.20	>	0.11
2009	> 2.!	50	> 1	0.30	>	0.2	21	> 0	.19	>	0.10
from 2010	> 2.5	50	> 1	0.00	>	0.2	20	> 0	.18	>	0.10

Pollutant CO SO2 TSP PM10 PM2.5

Fertilizers

[Hier fehlt Text]

Table 5: Emission factors of fertilizers in Germany, in kg/t

. Table 5: Emission factors of fertilizers in Germany, in kg/t

~ Product			= Fertilizers	>	= Nitrogenous Fertilizers
~ Pollutant	= PM,,10,,	= PM,,2.5,,	= TSP	= NH,,3,,	= TSP
= from 1990 to 1994	>	>	> 2	> 5	> 1
= 1995	> 0.12	> 0.08	> 0.17	> 5	> 1
= 1996	> 0.12	> 0.08	> 0.17	> 5	> 1
= 1997	> 0.12	> 0.08	> 0.17	> 5	> 1
= 1998	> 0.12	> 0.08	> 0.17	> 5	> 1
= 1999	> 0.12	> 0.08	> 0.17	> 5	> 1
= from 2000	> 0.12	> 0.08	> 0.17	> 5	> 1

2.B.10.a - Other Chemicals 5/6

Sulphuric acid

The activity data for sulphuric acid production are from the statistical office of Germany.

[David: Text einfügen]

For the SO_x EF from sulphuric acid production there was made a survey in the year 2019. The producers were directly asked by the association. Based on the data from the producers new EFs for the years 2017 and 2018 were developed. All emissions were measured by the producers or respectively are limit values specified in the permit decision for the installation. The EF is weighted by the amount of H_2SO_4 produced. Big producers have more influence on the EF than small producers. The EF is smaller than the Default-EF. The reason for this is due to significant process optimizations and technology improvements since 1990.

Chlor-alkali industry

For the mercury losses from the Chlor-alkali industry Germany uses the yearly published data from OSPAR on the plant specific production capacity for the AD and the plant specific emissions from the chlor-alkali industry. Because of the BAT conclusion for the Chlor-alkali industry the production has stopped in 2017. But the emissions of Hg are still continuing, because two plants are producing alcoholates and dithionite and are not regulated by the BAT conclusions for Chlor-alkali production.

Recalculations

For SO_2 emissions from titan dioxide production and sulphuric acid production and for Hg emissions from chlor-alkali industry the emissions of the two last years are always actualized. Because the emissions of the last year are always a prediction as these emissions are still not published. As the SO_x -EF of sulphuric acid production was replaced for the years 2017 and 2018 by a lower value, the emissions have been reduced repectively. Due to confidentiality reasons, a detailled documentation cannot be provided here.

For specific **information on recalculated emission estimates for Base Year and 2018**, please see the pollutant specific recalculation tables following chapter 8.1 - Recalculations.

Planned improvements

No category-specific improvements are planned.

1) 3)

DESTATIS, Fachserie 4, Reihe 3.1, Produzierendes Gewerbe, Produktion im Produzierenden Gewerbe ("manufacturing industry; production in the manufacturing industry"

2.B.10.a - Other Chemicals 6/6

2)

TODO: David bitte vervollständigen DESTATIS, 1992: p. 234