2.C.1 - Iron & Steel Production

Short description

Source category NFR 2.C.1 - Iron & Steel Production comprises process-related emissions from oxygen steel and electric-steel production.

Category Code	Method					AC	AD			EF					
2.C.1		T2				NS				CS					
Key Category	SO 2	NO×	ΝН₃	NMVOC	СО	BC	Pb	Hg	Cd	Diox	PAH	HCB	TSP	PM 10	PM2 5
2.C.1	L/-	-	-	-	L/-	-	L/T	L/T	L/T	L/T	-	-	L/T	L/T	L/T

 \mathbf{T} = key source by Trend \mathbf{L} = key source by Level

Methods	
D	Default
RA	Reference Approach
Т1	Tier 1 / Simple Methodology *
T2	Tier 2*
Т3	Tier 3 / Detailed Methodology *
С	CORINAIR
CS	Country Specific
Μ	Model
AD - Data Source for ActivityNS National StatisticsRS Regional Statistics	
IS International Statistics	
PS Plant Specific data	
AS Associations, business organ	nisations
Q specific questionnaires, surv	/eys
EF - Emission Factors	
D Default (EMEP Guidebook)	
Default (EMEP Guidebook)	

In 2019 a total of 27.7 million t of raw steel was produced in six integrated steelworks. Electrical steel production amounted to another 11.9 million t.

Other structural elements are sinter production, hot iron production, hot rolling, iron and steel foundries (including malleable casting). The last Siemens-Martin steel works (Stahlwerk Brandenburg) was shut down shortly after 1990; the last Thomas steel works (Maxhütte Sulzbach-Rosenberg) discontinued its production in 2002. Due to their minor relevance and the phasing out, the emissions from Siemens-Martin and Thomas steel production are jointly calculated with the emissions from oxygen steel production.

Energy-related emissions from steel production for the years 1990 - 1994 (for individual pollutants until 1999) are reported under 1.A.2.a.

Method

Activity data

Activity data are is collected from plant operators by national institutions. After discontinuation of the special public statistics for iron and steel production (FS. 4, R. 8.1), the information is collected by the German steel trade association Wirtschaftsvereinigung Stahl (WV Stahl) based on a formal agreement.

As the activity rates for 2017 could not be provided by WV Stahl as a result of compliance issues, aggregated figures from emissions trading were used instead. The consistency of emissions trading data has been verified against comparative figures for previous years. The deviations were less than

1%, only in sinter production they are noticeably higher (maximum + 8%).

In the iron and steel industry, only minor amounts of secondary fuels are used for pig iron production in individual blast furnaces. They are used as substitute reducing agents, instead of coke and coal. To date, these materials have not yet been included in the national statistics and in the Energy Balance. For this reason, the data used is also provided by the steel trade association (WV Stahl).

Emission factors

The emission factors used for emissions calculation are based on emission data from individual plants, either determined by the Umweltbundesamt (UBA) itself (emission factors for 1995 - 2001) or by a research project (emission factors for 2008 and later).

As the EF for the years 1995 - 2001 as well as for 2008 are based on real stack emission data, it is not possible to distinguish between combustion and process emissions (they are emitted via the same stacks). Hence whereever plant-based EF were available, i.e. for most pollutants for the years 1995 and later, all emissions are reported under 2.C.1.

Please note that the reported emissions also cover diffuse emissions from sources that are not covered in the EMEP/EEA Guidebook. For many pollutants and sources, individual EFs for channelled as well as diffuse emissions have been determined. While there is sufficient knowledge and measurement data of channelled emissions, the emission data concerning diffuse sources is usually based on estimations, using parameters adapted to the local conditions of the individual emission source. Therefore, emission data for one source of diffuse emissions is hardly significant for the diffuse emissions from other plants. The emission factors given below were calculated as the weighted average of pollution loads reported for individual diffuse sources by the plant operators, in relation to their corresponding production amounts.

pollutant	Type of source	EF 1990	EF 1995	EF 2000	EF 2005	EF 2010	EF 2016	unit	Trend
Cd			0.098	-	0.052	0.0)17	g/t	falling
CO		19.	152	17.325	15.497	14	.4	kg/t	falling
Cr			0.077		0.044	0.	02	g/t	falling
НСВ				0.0)3		mg/t	constant	
Hg			0.059		0.028	0.0	05	g/t	falling
Ni			0.139		0.068	0.0)15	g/t	falling
NMVOC				0.1	12			kg/t	constant
NOx		IE	1)	0.558	0.46	0.4	01	kg/t	falling
PAH		320.00	248.571	177.143		120		mg/t	falling
Pb			5.299	-	3.242	1	.7	g/t	falling
PCB		3.0	2.285714	1.571429		1	mg/t	falling	
PCDD/F		6.0	4.575	3.149	1.724	0.796	0.578	μg/t	falling
SO2		IE	2)	1.08	0.837	0.6	591	kg/t	falling
TSP	channelled		0.65	0.465	0.234	0.0	96	kg/t	falling
TSP	diffuse			0.0	46	÷		kg/t	new EF
PM10	channelled		0.445	0.336	0.177	0.	07	kg/t	falling
PM10	diffuse			0.0	16			kg/t	new EF

Table 1: Overview of applied emission factors applied for sinter production

pollutant	Type of source	EF 1990	EF 1995	EF 2000	EF 2005	EF 2010	EF 2016	unit	Trend
PM2.5	channelled		0.214	0.206	0.13	0.0	56	kg/t	falling

Table 2: Overview of applied emission factors applied for pig iron production

pollutant	Type of source	EF 1995	EF 2000	EF 2005	EF 2010	EF 2016	unit	Trend		
B(a)P				0.05			mg/t	constant		
Cd	channelled		0.004							
Cd	diffuse			0.000203			g/t	constant		
CO	channelled	1.18	0.915	0.65	0.491	0.491	kg/t	falling		
CO	diffuse			0.398			kg/t	constant		
Cr	channelled	0.019	0.006	0.002	0.001	0.001	g/t	falling		
Cr	diffuse			0.008			g/t	constant		
Hg	channelled	0.002436	0.000192	0.000015	0.000003	0.000003	g/t	falling		
Hg	diffuse			0.005			mg/t	constant		
Ni	channelled	0.021	0.006	0.002	0.001	0.001	g/t	falling		
Ni	diffuse			0.008			g/t	constant		
NMVOC				0.018525	_	_	kg/t	constant		
NOx	channelled	0.051938	0.051938	0.051938	0.0517	0.0517	kg/t	falling		
NOx	diffuse			0.001			g/t	constant		
Pb	channelled			0.022			kg/t	constant		
Pb	diffuse			0.011			g/t	constant		
PCDD/F		0.026	0.009	0.004	0.004	0.004	μg/t	falling		
SO2	channelled				-	0.242	g/t	constant		
SO2	diffuse			0.04			kg/t	constant		
TSP	channelled	0.022	0.015	0.01	0.008	0.008	kg/t	falling		
TSP	diffuse	0.016						constant		
PM10	channelled	0.013 0.009 0.006 0.006 0.006						falling		
PM10	diffuse	0.007						constant		
PM2.5	channelled	0.009	0.007	0.005	0.004	0.004	kg/t	falling		

Table 3: Overview of applied emission factors applied for oxygen steel production

pollutant	Type of source	EF 1995	EF 2000	EF 2005	EF 2010	EF 2016	unit	Trend
Cd		0.053	0.038	0.024	0.016	0.016	g/t	falling
CO		11.500	11.077	10.654	10.400	10.400	kg/t	falling
Cr	channelled	0.715	0.306	0.125	0.028	0.028	g/t	falling
Cr	diffuse			0.069			g/t	new EF, constant
Ni	channelled	0.090	0.060	0.030	0.006	0.006	g/t	falling
Ni	diffuse			0.004			g/t	new EF, constant
NOx	channelled	0.006	0.005	0.005	0.004	0.004	kg/t	falling
NOx	diffuse			0.0037			kg/t	constant
PAH				0.100			mg/t	constant
Pb	channelled	2.941	1.883	0.824	0.189	0.189	g/t	falling
Pb	diffuse			0.278			g/t	new EF, constant
PCB		2.670	1.740	1	1	1	mg/t	falling
PCDD/F		0.070	0.070	0.070	0.069	0.069	µg/t	falling

pollutant	Type of source	EF 1995	EF 2000	EF 2005	EF 2010	EF 2016	unit	Trend
SO2	diffuse			kg/t	constant			
TSP	channelled	0.155	0.145	0.145	0.024	0.024	kg/t	falling
TSP	diffuse			0.049			kg/t	new EF, constant
PM10	channelled	0.099	0.093	0.093	0.020	0.020	kg/t	falling
PM10	diffuse			0.019			kg/t	new EF, constant
PM2.5	channelled	0.025	0.023	0.023	0.017	0.017	kg/t	falling

Table 4: Overview of applied emission factors applied for electric steel production

pollutant	Type of source	EF 1995	EF 2000	EF 2005	EF 2010	EF 2016	unit	Trend
B(a)P		2.531	1.661	0.792	0.271	0.271	mg/t	falling
Cd		0.240	0.157	0.065	0.016	0.016	g/t	falling
CO	channelled	1.700	1.187	0.674	0.366	0.366	kg/t	falling
CO	diffuse			0.001			kg/t	new EF, constant
Cr	channelled	0.481	0.206	0.258	0.323	0.323	g/t	fluctuating
Cr	diffuse		_	0.851			g/t	constant
Hg	channelled	0.306	0.288	0.154	0.070	0.070	g/t	falling
Ni	channelled	0.483	0.207	0.145	0.124	0.124	g/t	falling
Ni	diffuse			0.284			g/t	constant
NMVOC		0.035	0.024	0.012	0.006	0.006	kg/t	falling
NOx	channelled	0.122	0.12	0.106	0.098	0.098	kg/t	falling
NOx	diffuse			0.014			kg/t	new EF, constant
PAH		45	22	3.793	3.790	3.793	mg/t	falling
Pb	channelled	4.075	1.747	0.720	0.170	0.170	g/t	falling
Pb	diffuse			0.056			g/t	new EF, constant
PCB		5.68	3.360	1.500	1.500	1.500	mg/t	falling
PCDD/F		0.466	0.295	0.158	0.158	0.158	µg/t	falling
SO2	channelled			0.113			kg/t	constant
SO2	diffuse			0.004			kg/t	new EF, constant
TSP	channelled	0.28	0.12	0.074	0.018	0.018	kg/t	falling
TSP	diffuse				0.043	0.043	kg/t	new EF, constant
PM10	channelled	0.179	0.08	0.051	0.013	0.013	kg/t	falling
PM10	diffuse				0.007	0.007	kg/t	new EF, constant
PM2.5	channelled	0.045	0.04	0.038	0.011	0.011	kg/t	falling

Table 5: Overview of applied emission factors applied for hot and cold rolling

pollutant	Type of source	EF 1995	EF 2000	EF 2005	EF 2010	EF 2016	unit	Trend
CO					0.005	0.005	kg/t	constant
NH3				0.7	700		g/t	constant
NMVOC				0.0	03		kg/t	constant
NOx			0.410	0.276	0.196	0.196	kg/t	falling
SO2			0.059	0.050	0.044	0.044	kg/t	falling
TSP	channelled				0.020	0.020	kg/t	new EF, constant
TSP	diffuse				0.010	0.010	kg/t	new EF, constant
PM10	channelled				0.304	0.304	g/t	new EF, constant

pollutant	Type of source	EF 1995	EF 2000	EF 2005	EF 2010	EF 2016	unit	Trend
PM10	diffuse				0.645	0.645	g/t	new EF, constant
PM2.5	channelled				0.266	0.266	g/t	new EF, constant

Table 6: Overview of applied emission factors applied for iron and steel casting

pollutant	EF 2010	unit	Trend
B(a)P	10	mg/t	constant
NH3	0.027	kg/t	falling
NMVOC	0.150	kg/t	constant
NOx	0.242	kg/t	falling
PAH	0.100	g/t	constant
PCDD/F	0.190	μg/t	constant
SO2	0.256	kg/t	falling
TSP	0.200	kg/t	constant
PM10	0.137	kg/t	constant
PM2.5	0.0836	kg/t	constant

Discussion of emission trends

Trends in emissions correspond to trends of emission factors in the table above, in many cases due to regulatory measures. Since 2010, the main driver for the emission trends in most cases is the activity data.

Recalculations

Replacing data of the preliminary energy balance with data of the final energy balance leads to restatements for the years 2017 and 2018.

For more information on recalculated emission estimates for Base Year and 2018, please see the pollutant specific recalculation tables following chapter 8.1 - Recalculations.

Planned improvements

HCB emissions from iron and steel production have not been included so far due to a lack of emission data (notation key NE). In the past, the standard emission factor was not considered as appropriate, because it was unclear from what kind of data the factor was derived from and to which process/activity rate it actually referred to. In order to overcome this data gap, information will be collected within the scope of a reserach project for updating and completing the emission factors for the sector. The project will start in 2021 and is designed to run three years.

As long as no country specific emission factor for HCB has been derived, the standard emission factor is used. In implementing the EMEP/EEA Guidebook standard emission factor Germany is following recommendations provided by the Expert Review Team for the NECD-Review in 2020.

1) 2)

Emissions were reported under NRF Code 1.A.2.a