2.A.3 - Glass Production

Short description

Category Code	e Method			AD					EF							
2.A.3			T2	2				AS	5				CS			
Key Category	SO2	NO×	NНз	ΝΜΥΟΟ	CO	BC	Pb	Hg	Cd	Diox	PAH	HCB	TSP	PM10	PM ₂	5
2.A.3	L/-	-/-	-/-	-/-	-	-	-/-	-	-/-	-	-	-	-/-	-/-	-/-	
T = key source b	y Tre	end L	. = k	ey source	e by	Lev	vel									
Methods																
	D			Defau	ult											
RA			Refer	Reference Approach												
T1			Tier 1	Tier 1 / Simple Methodology *												
T2				Tier 2	Tier 2*											
Т3			Tier 3	Tier 3 / Detailed Methodology *												
c C				CORI	CORINAIR											
C	S			Coun	try	Spe	cific									
I	М			Mode	el											
* as described in chapters.	the	EME	P/CO	RINAIR EI	miss	sion	Inv	ento	ory	Guide	ebook	: - 200)7, in	the g	roup	specifi
AD - Data Sour	ce f	or Ae	ctivi	ty Data												
NS National Stat	istic	S														
RS Regional Sta	tistic	S														
IS International Statistics																
PS Plant Specific	c dat	a														
AS Associations,	, bus	iness	orga	anisation	S											
Q specific ques	tionr	naire	s, sui	rveys												
EF - Emission F	acto	ors														
D Default (EME	P Gu	ideb	ook)													
C Confidential																
CS Country Spec	cific															
PS Plant Specific	dat	a														

Germany's glass industry produces a wide range of different glass types that differ in their chemical composition. Germany's glass sector comprises the following sub-sectors: container glass, flat glass, domestic glass, special glass and mineral fibres (glass and stone wool). The largest production quantities are found in the sectors of container glass and flat glass. Further processing and treatment of glass and glass objects are not considered. Information about the key source relevance can be found in 2.A - Mineral Industry.

Methodology

The emissions are calculated via a higher Tier method resembling a Tier 2 method, as the activity rates are tied to specific emission factors for different glass types.

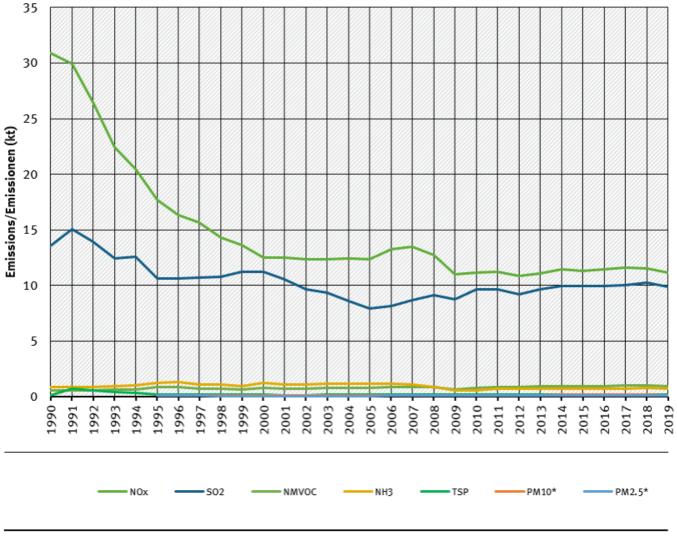
Activity data

The production figures are taken from the regularly appearing annual reports of the Federal Association of the German Glass Industry (Bundesverband Glasindustrie; BV Glas). "Production" refers to the amount of glass produced, which is considered to be equivalent to the amount of glass melted down.

Emission factors

The procedure used to determine emission factors for the various glass types involved and the pertinent emissions is described in detail in reports of research projects (Report-No. 001264, search "UBA-FB 001264" in (https://doku.uba.de \Rightarrow OPAC \Rightarrow Signatur). The emission factors were calculated for the various industry sectors. The factors vary annually in keeping with industry monitoring, not only as steady trends, but as time ranges. Ranges below are given as averages over all glass types for main pollutants, but as averages over time for heavy metals:

Pollutant	Products	EF	Unit	Current trend
NOx	all glass types	1.0-3.4	kg/t	constant
SO ₂	all glass types	0.39-1.9	kg/t	constant
NMVOC	all glass types	0.96	kg/t	constant
NH₃	two glass types	0.03/0.7	kg/t	constant
TSP	all glass types	0.02-0.04	kg/t	constant
PM 10	all glass types	0.01-0.03	kg/t	constant
PM2.5	all glass types	0.01-0.02	kg/t	constant
As	container glass	0.04-0.13	g/t	rising
Pb	container glass	0.22-0.41	g/t	rising
Cd	container glass	0.01-0.04	g/t	rising
Cr	container glass	0.03-0.07	g/t	falling
Cu	container glass	0.10-0.23	g/t	falling
Ni	container glass	0.01-0.02	g/t	erratic
Se	container glass	0.8-1.9	g/t	erratic


Table 1: Overview of applied emission factors

Trends in emissions

Trends in emissions correspond to trends of emission factors and of activity data. The resulting trends are not constant, but a complex result of different EF for various glass types. So emissions of SO_2 could rising due to increased production Level of a relevant product.

trends of emissions of glass production

Emissions by pollutant / Emissionen nach Schadstoff

* Base Year for PM = 1995 / Basisjahr für Feinstäube (PM) ist 1995

Emission trends in NFR 2.A.3

Recalculations

Recalculations were necessary due to updated activity data for the last reported year.

For pollutant-specific information on recalculated emission estimates for Base Year and 2018, please see the pollutant specific recalculation tables following chapter 8.1 -Recalculations.

German Emission Inventory (12.02.2021)

Planned improvements

For purposes of updating the EF project has started in 2019, results from 2020¹⁾ are planned to be use for Submission 2022.

¹⁾ ReFoPlan FKZ – 3719 52 1010: "Überarbeitung der Emissionsfaktoren für Luftschadstoffe in den Branchen Zementklinkerproduktion und Glasherstellung"