2.A.2 - Lime Production

Short description

Category Code	Method				AD				EF							
2.A.2	T1			L		AS					CS					
Key Category	SO 2	NO×	NH₃	NMVOC	CO	BC	Pb	Hg	Cd	Diox	PAH	HCB	TSP	PM 10	PM ₂	5
2.A.2	-/-	-/-	-	-/-	-	-	-	-/-	-	-	-	-	-/-	-/-	-/-	
T = key source b	y Tr€	end L	. = k	ey source	e by	Lev	el									
Methods																
	D			Defau	Default											
R	A			Refer	Reference Approach											
Т	1			Tier 1	Tier 1 / Simple Methodology *											
Т	2			Tier 2	Tier 2*											
T3 Tie			Tier 3	Tier 3 / Detailed Methodology *												
	C CORIN			NAII	R											
CS Countr			try	Spec	ific											
	M Model				el											
* as described in chapters.	the	EME	P/CO	RINAIR EI	miss	sion	Inve	ento	ory	Guide	ebook	: - 200)7, in	the g	roup	spe
AD - Data Sour	ce f	or Ac	tivi	ty Data												
NS National Stat	NS National Statistics															
RS Regional Statistics																
IS International Statistics																
PS Plant Specific	c dat	a														
AS Associations,	bus	iness	orga	anisation	s											
Q specific ques	tionr	naire	s, sui	rveys												
EF - Emission F	acto	ors														
Default (EME	P Gu	idebo	ook)													
C Confidential																
CS Country Spec	ific															
PS Plant Specific	- dat	~														

The statements made below regarding source category 2.A.2 refer solely to the amounts of burnt lime and dolomite lime produced in German lime works. Other lime-producing processes are included in NFR 2.C.1 and 2.H.2.

Information about the key source relevance can be found in 2.A - Mineral Industry.

Because of the wide range of applications covered by the sector's products, lime production is normally more isolated from economic fluctuations than is production of other mineral products such as cement. Production has fluctuated relatively little since the end of the 1990s. Dolomite-lime production, of which significantly smaller amounts are produced, basically exhibits similar fluctuations.

Methodology

The pertinent emissions level is obtained by multiplying the amount of product in question (quick lime or dolomite lime) and the relevant emission factor.

Activity data

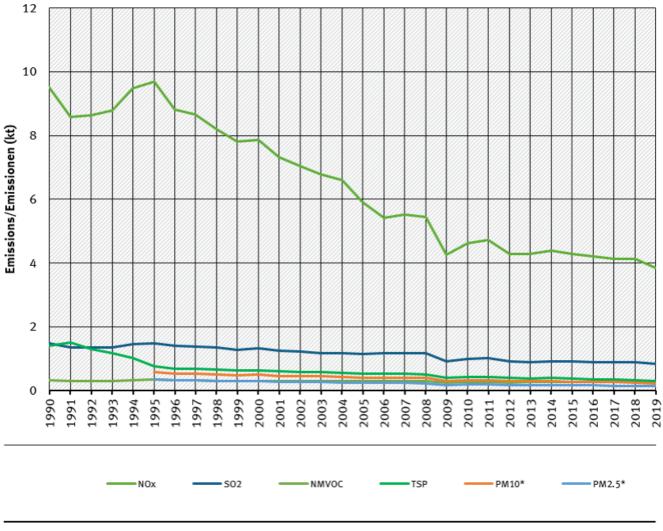
The German Lime Association (BVK) collects the production data for the entire time series on a plantspecific basis, and makes it available for reporting purposes. Production amounts are determined via several different concurrent procedures; their quality is thus adequately assured (Tier 2). Most companies are also required to report lime-production data within the framework of CO₂-emissions trading. The EU monitoring guidelines for emissions trading specify a maximum accuracy of 2.5%. It is additionally assumed that 2% of the burnt lime is separated as dust in all years of the reporting period from 1990 onwards via appropriate exhaust gas purification systems and is not returned to the production process. This is taken into account by a potential 2% increase in activity rates.

Emission factors

pollutant	Name of Category	EF	unit	Trend
NOx	quicklime	0.59	kg/t	falling
SO ₂	quicklime	0.12	kg/t	falling
NMVOC	quicklime	0.041	kg/t	constant
TSP	quicklime	0.050	kg/t	falling
PM 10	quicklime	0.038	kg/t	falling
PM2.5	quicklime	0.023	kg/t	falling
Hg	quicklime	2.62	mg/t	falling

Table 1: Emission factors for quick-lime production

Table 2: Emission factors for dolomite production


pollutant	Name of Category	EF	unit	Trend
NOx	dolomite	1.81	kg/t	falling
SO ₂	dolomite	0.59	kg/t	falling
NMVOC	dolomite	0.041	kg/t	constant
TSP	dolomite	0.038	kg/t	falling
PM 10	dolomite	0.029	kg/t	falling
PM2.5	dolomite	0.017	kg/t	falling
Hg	quicklime	2.94	mg/t	falling

Trends in emissions

All trends in emissions correspond to trends of emission factors in table above. No rising trends are identified.

trends of emissions of lime production

Emissions by pollutant / Emissionen nach Schadstoff

* Base Year for PM = 1995 / Basisjahr für Feinstäube (PM) ist 1995

Emission trends in NFR 2.A.2

Recalculations

With **activity data** and **emission factors** remaining unrevised, no recalculations have been carried out compared to last year's submission.

For pollutant-specific information on recalculated emission estimates for Base Year and 2018, please see the pollutant specific recalculation tables following chapter 8.1 -Recalculations.

German Emission Inventory (09.02.2021)

Planned improvements

At the moment, no category-specific improvements are planned.