3.I - Agricultural: Other

Short description

NFR-Code	Name	e of	f Cat	tego	ory	,					N	/le [·]	th	od		A	D	E	F				Sta	te of reporting
3.1	Agricu	ıltu	re of	her														Γ						
consisting	j of / i	ncl	udir	ng s	ou	rce	e ca	teg	or	ies														
3.1	Storag	ge d	of dig	gest	ate	fr	om	ene	rgy	/ cro	os T	2 ((Nł	H ₃ , I	NO _×) Q	, PS	S C	5 (N	١H	3, NC) _x)		
Key Categ	jory S	02	NO×	NH	3 N	M١	/00	co	B	C Pb	Hg	C	d	Dio	x P	ÅН	HC	В	TSI	PI	PM10	P	M2 5	5
3.1	-	-	-/-	-/-	┢	-		-	1-	-	-	1-	-	-		-	-		-	T	-	t	-	1
T = key so	urce by	/ Tr	rend	L =	ke	y s	sour	ce b	oy I	_eve														
Methods																								
		D								ult														
		R/								renc		·												
		Τ1								1/S	imp	le	Me	etho	odol	ogy	/*							
		Τ2							er															
		T3								3 / D		ile	d١	٩et	hod	olo	gy :	*						
		С						_		INAI														
		CS	5					_		ntry S	Spe	cifi	ic											
		М	·						od	-														
								_	ssi	on Ir	iver	nto	ory	Gu	ide	000	k -	20	07,	in	the	gr	oup	specific chapters
AD - Data				Activ	vit	y C	Data	3																
NS Nation																								
RS Region																								
IS Interna				s																				
PS Plant S	-																							
AS Associa					-			ns																
Q specifi	· ·			es, s	sur	vey	/S																	
EF - Emis																								
Default		, Gi	uidel	pook	()																			
C Confide																								
CS Countr																								
PS Plant S	pecific	da	ta																					

Country specifics

In 2020, NH_3 emissions from category 3.I (agriculture other) derived up to 0.6 % from total agricultural emissions, which is equal to ~ 3.1 kt NH_3 . NO_x emissions from category 3.I contribute 0.16 % (~ 0.17 kt) to the total agricultural emissions. All these emissions originate from the storage of digestate from energy crops (for details on anaerobic digestion of energy crops see Vos et al. 2022, Chapter 10⁻¹⁾. Note that these emissions of NH_3 and NO_x from storage of anaerobically digested energy crops are excluded from emission accounting by adjustment as they are not considered in the NEC and Gothenburg commitments (see Adjustment DE - D - Nitrogen oxides (3.D.a.2.c Other organic fertilisers applied to soils (including compost)') & amp; Ammonia from Energy Crops). The emissions resulting from the application of energy crop digestates as organic fertilizer are dealt with under 3.D.a.2.c.

Activity Data

Time series of activity data have been provided by KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft / Association for Technology and Structures in Agriculture). From these data the amount of N in energy crops fed into anaerobic digestion was calculated.

Table 1: N amount in energy crops fed into anaerobic digestion

	N amount in energy crops in Gg N													
1990	1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	
0.1	0.7	5.6	47.6	172.0	214.5	234.9	284.1	297.3	308.8	307.1	302.1	297.6	297.6	

Table 2: Distribution of gastight storage and storage in open tank of energy crop digestates

	Distribution of gastight storage and non-gastight storage, in %													
	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
gastight	0.0	4.7	9.4	15.8	42.2	47.5	59.4	61.9	63.9	64.6	64.8	64.5	64.8	64.8
non-gastight	100.0	95.3	90.6	84.2	57.8	52.5	40.6	38.1	36.1	35.4	35.2	35.5	35.2	35.2

Methodology

The calculation of emissions from storage of digestate from energy crops considers two different types of storage, i. e. gastight storage and open tank. The frequencies of these storage types are also provided by KTBL (see Table 2). There are no emissions of NH_3 and NO from gastight storage of digestate. Hence the total emissions from the storage of digestate are calculated by multiplying the amount of N in the digestate leaving the fermenter with the relative frequency of open tanks and the emission factor for open tank. The amount of N in the digestate leaving the fermenter is identical to the N amount in energy crops fed into anaerobic digestion (see Table 1) because N losses from pre-storage are negligible and there are no N losses from fermenter (see Rösemann et al. 2021, Chapter 10.2.1.)

Emission factors

As no specific emission factor is known for the storage of digestion residues in open tanks, the NH₃ emission factor for storage of cattle slurry with crust in open tanks was adopted (0.045 kg NH₃ -N per kg TAN). This choice of emission factor is based on the fact that energy crops are, in general, co-fermented with animal manures (i. e. mostly slurry) and that a natural crust forms on the liquid digestates due to the relatively high dry matter content of the energy crops. The TAN content after the digestion process is 0.56 kg TAN per kg N. The NO emission factor for storage of digestion residues in open tanks was set to 0.0005 kg NO-N per kg N. Table 3 shows the resulting implied emission factors for NH₃ -N and NO-N. NO_x emissions are related to NO-N emissions by the ratio of 46/14. This relationship also holds for NO-N and NO_x emission factors.

Table 3: IEF for NH₃ -N and NO-N emissions from storage of digested energy crops

1990	1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
IEF in kg NH ₃ -N per kg N in digested energy crops													
0.0252	0.0240	0.0228	0.0212	0.0146	0.0132	0.0102	0.0096	0.0091	0.0089	0.0089	0.0089	0.0089	0.0089
IEF in k	IEF in kg NO-N per kg N in digested energy crops												
0.00050	0.00048	0.00045	0.00042	0.00029	0.00026	0.00020	0.00019	0.00018	0.00018	0.00018	0.00018	0.00018	0.00018

Trend discussion for Key Sources

 $\text{NH}_{\scriptscriptstyle 3}$ and $\text{NO}_{\scriptscriptstyle x}$ from storage of anaerobically digested energy crops are no key source.

Recalculations

All time series of the emission inventory have completely been recalculated since 1990. Table REC-1 shows the effects of recalculations on NH_3 and NO_x emissions from storage of anaerobically digested energy crops. Differences to last year's submission occur only in 2018 and are due to the update of activity data (see main page of the agricultural sector, Chapter 5 - NFR 3 - Agriculture (OVERVIEW), **recalculation reason No 15**). For further details on recalculations see Rösemann et al. (2021), Chapter 3.5.2.

Table REC-1: Comparison of NH_3 and NO_x emissions of the submissions (SUB) 2020 and 2021

NH₃ / NO_x emissions in Gg

	SUB	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
NH ₃	2021	0.0015	0.0190	0.1563	1.2267	3.0426	3.4504	2.9206	3.3062	3.2814	3.3428	3.3004	3.2741	3.2013	3.2013
NH ₃	2020	0.0015	0.0190	0.1563	1.2267	3.0426	3.4504	2.9206	3.3062	3.2814	3.3428	3.3004	3.2741	3.2895	
NOx	2021	0.0001	0.0010	0.0084	0.0659	0.1634	0.1852	0.1568	0.1775	0.1762	0.1795	0.1772	0.1758	0.1719	0.1719
NO _x	2020	0.0001	0.0010	0.0084	0.0659	0.1634	0.1852	0.1568	0.1775	0.1762	0.1795	0.1772	0.1758	0.1766	

Uncertainty

Details will be described in chapter 1.7.

1)

Vos et al. (2022): Vos C., Rösemann C., Haenel H-D., Dämmgen U., Döring U., Wulf S., Eurich-Menden B., Freibauer A., Döhler H., Schreiner C., Osterburg B. & Fuß, R. (2022): Calculations of gaseous and particulate emissions from German Agriculture 1990 –2020. Report on methods and data (RMD), Submission 2022. (in preparation). https://www.thuenen.de/de/ak/arbeitsbereiche/emissionsinventare/