1.B.2.c - Venting and Flaring

## 1.B.2.c - Flaring

| <b>Category Code</b> | Method |     |     |       | AD  |     |    |     | EF |      |     |     |     |                  |                   |
|----------------------|--------|-----|-----|-------|-----|-----|----|-----|----|------|-----|-----|-----|------------------|-------------------|
| 1.B.2.c              | T2     |     |     |       | AS  |     |    |     | CS |      |     |     |     |                  |                   |
| Key Category         | SO2    | NOx | ΝНз | NMVOC | СО  | ВС  | Pb | Hg  | Cd | Diox | PAH | нсв | TSP | PM <sub>10</sub> | PM <sub>2</sub> 5 |
| 1.B.2.c              | -/-    | -/- | -   | -/-   | -/- | -/- | -  | -/- | -  | -    | -   | -   | -/- | -/-              | -/-               |

Pursuant to general requirements of the Technical Instructions on Air Quality Control TA Luft (2002), gases, steam, hydrogen and hydrogen sulphide released from pressure valves and venting equipment must be collected in a gas-collection system. Wherever possible, gases so collected are burned in process combustion. Where such use is not possible, the gases are piped to a flare. Flares used for flaring of such gases must fulfill at least the requirements for flares for combustion of gases from operational disruptions and from safety valves. For refineries and other types of plants in categories 1.B.2, flares are indispensable safety components. In crude-oil refining, excessive pressures can build up in process systems, for various reasons. Such excessive pressures have to be reduced via safety valves, to prevent tanks and pipelines from bursting. Safety valves release relevant products into pipelines that lead to flares. Flares carry out controlled burning of gases released via excessive pressures. When in place, flare-gas recovery systems liquify the majority of such gases and return them to refining processes or to refinery combustion systems. In the process, more than 99 % of the hydrocarbons in the gases are converted to CO<sub>2</sub> and H<sub>2</sub>O. When a plant has such systems in operation, its flarehead will seldom show more than a small pilot flame.

|                            | Unit                       | 1990 | 1995 | 2000  | 2005  | 2010 | 2015 | 2018 | 2019 |
|----------------------------|----------------------------|------|------|-------|-------|------|------|------|------|
| Flared natural gas         | millions of m <sup>3</sup> | 36   | 33   | 36    | 18.7  | 12.1 | 10.5 | 10.6 | 15.6 |
| Refined crude-oil quantity | millions of t              | 107  | 96.5 | 107.6 | 114.6 | 95.4 | 93.4 | 87.7 | 87   |

Flaring takes place in extraction and pumping systems and at refineries. In refineries, flaring operations are subdivided into regular operations and start-up / shut-down operations in connection with disruptions.

| Source of emission factor                                  | Substar         | າce  <sup>ເ</sup>  | Unit                |                                   | Value  |        |     |
|------------------------------------------------------------|-----------------|--------------------|---------------------|-----------------------------------|--------|--------|-----|
| Flaring emissions in natural gas extraction                | NMVOC           | IMVOC kg           |                     | kg/ 1000 m³                       |        |        |     |
| Flaring emissions in natural gas extraction                | NO×             | ) <sub>x</sub> kg  |                     | kg/ 1000 m³                       |        |        |     |
| Flaring emissions in natural gas extraction                | SO <sub>2</sub> |                    | kg/ 100             | 0 m³                              | 8.885  |        |     |
| Flaring emissions in natural gas extraction CO             |                 |                    | kg/ 100             | 0 m³                              | 0.726  |        |     |
| Source of emission factor                                  | Sub             | stance             | Unit                | Value                             |        |        |     |
| Flaring emissions at petroleum production                  | ΝO×             | O <sub>×</sub> kg/ |                     | 0.008                             |        |        |     |
| Flaring emissions at petroleum production facilities       |                 |                    | 5O <sub>2</sub> kg/ |                                   | 0.010  |        |     |
| Flaring emissions at petroleum production facilitie        |                 |                    | O g/t               |                                   | 0.1    |        |     |
| Source of emission factor                                  |                 |                    |                     | tance                             | Unit   | Value  |     |
| Flaring emissions at refineries: normal flaring operation  |                 |                    |                     | NMVOC                             |        | 0.004  | L   |
| Flaring emissions at refineries: normal flaring operations |                 |                    |                     | CO k                              |        | 0.001  | .]  |
| Flaring emissions at refineries: normal flaring operations |                 |                    |                     | SO₂ kg/r                          |        | 0.003  | 3   |
| Flaring emissions at refineries: normal flaring operations |                 |                    |                     | NO <sub>×</sub> kg/m <sup>3</sup> |        | 0      |     |
| Source of emission factor                                  |                 |                    |                     |                                   | stance | Unit V | alu |

Flaring emissions at refineries: disruptions of flaring operations NMVOC

Flaring emissions at refineries: disruptions of flaring operations CO kg/t 0.001
Flaring emissions at refineries: disruptions of flaring operations SO<sub>2</sub> kg/t 0.007
Flaring emissions at refineries: disruptions of flaring operations NO<sub>x</sub> kg/t 0.004

The emission factors have been derived from the 2004 and 2008 emissions declarations Theloke et al. 2013 1). In 2019, they

The emission factors have been derived from the 2004 and 2008 emissions declarations Theloke et al. 2013  $^{11}$ . In 2019, they were updated for CH<sub>4</sub>, N<sub>2</sub>O, CO, NMVOC, NO<sub>x</sub> and SO<sub>2</sub>, on the basis of Bender & von Müller, 2019  $^{21}$ . Venting emissions are taken into account in category 1.B.2.b.iii. The SO<sub>2</sub> emissions are obtained from the activity data for the flared natural gas (Table 178) and an emission factor of 0.140 kg / 1,000 m<sup>3</sup>, a factor which takes account of an average H<sub>2</sub>S content of 5 % by volume. The emission factors are determined on the basis of emissions reports, crude-oil-refining capacity and total capacity utilisation at German refineries. The guide for this work consists of the evaluation assessment of Theloke et al. (2013)  $^{31}$ .

kg/t 0.001

<sup>&</sup>lt;sup>1), 3)</sup> Theloke, J., Kampffmeyer, T., Kugler, U., Friedrich, R., Schilling, S., Wolf, L., & Springwald, T. (2013). Ermittlung von Emissionsfaktoren und Aktivitätsraten im Bereich IPCC (1996) 1.B.2.a. i-vi - Diffuse Emissionen aus Mineralöl und Mineralölprodukten (Förderkennzeichen 360 16 033). Stuttgart.

<sup>&</sup>lt;sup>2)</sup> Bender, M., & von Müller, G. (2019). Konsolidierung der Treibhausgasemissionsberechnungen unter der 2. Verpflichtungsperiode des Kyoto-Protokolls und der neuen Klimaschutz-Berichterstattungs-pflichten an die EU (FKZ 3716 41 107 0).