meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:energy:fugitive:gas:start [2021/03/15 11:09] – some decimal from , to . (some unclear!) gniffkesector:energy:fugitive:gas:start [2022/09/22 09:06] (current) – Fix link tarakji
Line 4: Line 4:
 | 1.B.2.b        |  T2, T3, M              |||||  AS              |||||  CS              ||||| | 1.B.2.b        |  T2, T3, M              |||||  AS              |||||  CS              |||||
  
-^  Key Category  ^  SO₂     ^  NOₓ  ^  NH₃  ^  NMVOC  ^  CO   ^  BC   ^  Pb   ^  Hg   ^  Cd   ^  Diox  ^  PAH  ^  HCB  ^  TSP  ^  PM₁₀  ^  PM₂ ₅  ^ +^  Key Category  ^  NOx  ^  NMVOC  ^  SO2  ^  NH3  ^  PM2_5  ^  PM10  ^  TSP  ^  BC  ^  CO   ^  PB  ^  Cd  ^  Hg  ^  Diox  ^  PAH  ^  HCB  ^ 
-| 1.B.2.b         |  -/-         -/-  |  -    |  -/-    |  -/-  |  -    |  -    |  -    |  -    |  -     |  -    |  -    |  -    |  -          |+| 1.B.2.b        |  -/-  |  -/-    |  -/-  |  -    |  -      |  -     |  -    |  -   |  -/-  |  -   |  -   |  -   |  -         -    |
  
 +.
  
 +{{page>general:Misc:LegendEIT:start}}
  
-  +===== 1.B.2.b.i - Exploration =====
-==== 1.B.2.b.i - Exploration ====+
  
  
Line 19: Line 20:
 The emissions of source category 1.B.2.b.ii consist of emissions related to production. Since 1998, the Federal Association of the Natural gas, Oil and Geothermal Energy Industries (BVEG) has determined the emissions from production and published the relevant data in its statistical report.  The emissions of source category 1.B.2.b.ii consist of emissions related to production. Since 1998, the Federal Association of the Natural gas, Oil and Geothermal Energy Industries (BVEG) has determined the emissions from production and published the relevant data in its statistical report. 
  
-^ activity data                       ^ Unit        1990  1995  2000  2005  2010  2015  | 2018  2019  | +^ activity data                        Unit        ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015   2019  ^  2020  ^ 
-| produced quantities of natural gas  | Billion m³  | 15.3  | 19.1  | 20.1  | 18.8  | 12.7  | 8.6   | 6.3   6.1   |+| produced quantities of natural gas  |  Billion m³  |   15.3 |   19.1 |   20.1 |   18.8 |   12.7 |    8.6 |    6.3 |    5.|
  
-^ Source of emission factor  ^ Substance  Unit         Value  | +^ Source of emission factor  ^ Substance  Unit         Value  ^ 
-| Natural gas production     | NMVOC      | kg/ 1000 m³  | 0.005  | +| Natural gas production     | NMVOC      | kg/ 1000 m³  |  0.005 |
-==== 1.B.2.b.iii - Processing ==== +
- +
  
 +===== 1.B.2.b.iii - Processing =====
  
 The emissions of this category consist of emissions from the activities of pretreatment and processing.  The emissions of this category consist of emissions from the activities of pretreatment and processing. 
-After being brought up from underground reserves, natural gas is first treated in drying and processing plants. As a rule, such pretreatment of the natural gas takes place in facilities located directly at the pumping stations. Such processes separate out associated water from reserves, along with liquid hydrocarbons and various solids. Glycol is then used to remove the water vapour remaining in the gas [1, p. 25]. Natural gas dehydration systems are closed systems. For safety reasons, all of such a system's overpressure protection devices are integrated within a flare system. When such protection devices are triggered, the surplus gas is guided to a flarehead, where it can be safely burned. After drying, the natural gas is ready for sale and can be delivered to customers directly, via pipelines [2]. The relevant quantities of flared gas are reported under 1.B.2.c. +After being brought up from underground reserves, natural gas is first treated in drying and processing plants. As a rule, such pretreatment of the natural gas takes place in facilities located directly at the pumping stations. Such processes separate out associated water from reserves, along with liquid hydrocarbons and various solids. Glycol is then used to remove the water vapour remaining in the gas (p. 25)[(WEG2008)]. Natural gas dehydration systems are closed systems. For safety reasons, all of such a system's overpressure protection devices are integrated within a flare system. When such protection devices are triggered, the surplus gas is guided to a flarehead, where it can be safely burned. After drying, the natural gas is ready for sale and can be delivered to customers directly, via pipelines [(EXXON2014)]. The relevant quantities of flared gas are reported under 1.B.2.c. 
-The natural gas drawn from Germany's Zechstein geological formation contains hydrogen sulphide. In this original state, the gas – known as "sour gas" – has to be subjected to special treatment. Due to the hazardousness of hydrogen sulphide, this gas is transported via separate, specially protected pipelines to German processing plants that wash out its hydrogen sulphide via chemical and physical processes. About 40 % of the natural gas extracted in Germany is sour gas [1].+The natural gas drawn from Germany's Zechstein geological formation contains hydrogen sulphide. In this original state, the gas – known as "sour gas" – has to be subjected to special treatment. Due to the hazardousness of hydrogen sulphide, this gas is transported via separate, specially protected pipelines to German processing plants that wash out its hydrogen sulphide via chemical and physical processes. About 40 % of the natural gas extracted in Germany is sour gas [(WEG2008)].
 The natural gas that leaves processing plants is ready for use. The hydrogen sulphide is converted into elementary sulphur and is used primarily by the chemical industry, as a basic raw material. The natural gas that leaves processing plants is ready for use. The hydrogen sulphide is converted into elementary sulphur and is used primarily by the chemical industry, as a basic raw material.
  
-^                                                 ^ Unit  1990  1995   | 2000   | 2005   | 2010  2015  | 2018  2019  | +^                                                  Unit  ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015   2019  ^  2020  ^ 
-| Sulphur production from natural gas production  | kt    | 915   | 1,053  | 1,100  1,050  | 832   | 628   | 420   | 460   |+| Sulphur production from natural gas production  kt    |    915 |  1,053 |  1,100  1,050 |    832 |    628 |    460 |    353 |
  
 For processing of sour gas, data of the BVEG (the former WEG) for the period since 2000 are used. This data is the result of the BVEG members' own measurements and calculations. For calculation of emissions from sour-gas processing, a split factor of 0.4 relative to the activity data is applied. That split factor is based on the WEG report [1] on sour-gas processing. For processing of sour gas, data of the BVEG (the former WEG) for the period since 2000 are used. This data is the result of the BVEG members' own measurements and calculations. For calculation of emissions from sour-gas processing, a split factor of 0.4 relative to the activity data is applied. That split factor is based on the WEG report [1] on sour-gas processing.
  
-^ Source of emission factor  ^ Substance  Unit         Value  | +^ Source of emission factor  Substance  ^  Unit         ^  Value  ^ 
-| Treatment of sour gas      | NMVOC      | kg/ 1000 m³  | 0.004  | +| Treatment of sour gas      |  NMVOC      |  kg/ 1000 m³  | 0.004   | 
-==== 1.B.2.b.iv - Transmission ====+| Treatment of sour gas      |  CO          kg/ 1000 m³  | 0.043   
 +| Treatment of sour gas      |  NOx        |  kg/ 1000 m³  | 0.011   | 
 +| Treatment of sour gas      |  SO2        |  kg/ 1000 m³  | 0.140   |
  
 +
 +===== 1.B.2.b.iv - Transmission =====
  
 This source category's emissions consist of emissions from activities of gas producers and suppliers. In Germany, natural gas is transported from production and processing companies/plants to gas suppliers and other processors. In addition, natural gas is imported and transmitted via long-distance pipelines. This source category's emissions consist of emissions from activities of gas producers and suppliers. In Germany, natural gas is transported from production and processing companies/plants to gas suppliers and other processors. In addition, natural gas is imported and transmitted via long-distance pipelines.
-Almost all of the pipelines used to transmit natural gas are steel pipelines [3].+Almost all of the pipelines used to transmit natural gas are steel pipelines [(ZOELLNER2014)].
  
-One important emissions pathway consists of the compressors that are used to maintain pressure in pipelines. They are spaced at intervals of about 100 km along lines [4]. At present, the compressors involved have a total power output of about 2,585 MW [5]. The pipelines are also fitted with shut-off devices (sliding sleeves), which are safety mechanisms located at intervals of about 30 km along high-pressure pipelines, and with systems for regulating and measuring gas pressure.+One important emissions pathway consists of the compressors that are used to maintain pressure in pipelines. They are spaced at intervals of about 100 km along lines [(GASUNIE2014)]. At present, the compressors involved have a total power output of about 2,585 MW [(OHLEN2019)]. The pipelines are also fitted with shut-off devices (sliding sleeves), which are safety mechanisms located at intervals of about 30 km along high-pressure pipelines, and with systems for regulating and measuring gas pressure.
  
-In pipeline inspection and cleaning, tools known as pipeline inspection gauges ("pigs") are used. In a pipeline system, a pig moves, driven by the gas flow, from a launching station to a receiving station (pig trap). Systems for launching and catching pigs can be either fixed or portable. Small quantities of methane are emitted in both insertion and removal of pigs. In addition, pig traps can develop leaks. Normally, however, such traps are regularly monitored for leaks and repaired as necessary. Not all types of pipelines can be pigged; diameter reductions, isolation valves, bends, etc. in pipelines can block pigs. These emissions have been estimated in the framework of a study carried out by the firm of DBI Gas- und Umwelttechnik GmbH [6].+In pipeline inspection and cleaning, tools known as pipeline inspection gauges ("pigs") are used. In a pipeline system, a pig moves, driven by the gas flow, from a launching station to a receiving station (pig trap). Systems for launching and catching pigs can be either fixed or portable. Small quantities of methane are emitted in both insertion and removal of pigs. In addition, pig traps can develop leaks. Normally, however, such traps are regularly monitored for leaks and repaired as necessary. Not all types of pipelines can be pigged; diameter reductions, isolation valves, bends, etc. in pipelines can block pigs. These emissions have been estimated in the framework of a study carried out by the firm of DBI Gas- und Umwelttechnik GmbH [(GROSSE2019)].
  
-^                                   ^ Unit        1990    1995    2000    2005    2010    2015    | 2018    | 2019    | +^                                    Unit        ^  1990    ^  1995    ^  2000    ^  2005    ^  2010    ^  2015    ^  2019    ^  2020    ^ 
-| Length of transmission pipelines Km          | 22,696  | 28,671  | 32,214  | 34,086  | 35,503  | 34,270  | 34,996  34,476  | +| Length of transmission pipelines  km           22,696  28,671  32,214  34,086  35,503  34,270  34,476   33,809  | 
-| Cavern reservoirs                 | Billion m3  | 2.8     | 4.8     | 6.1     | 6.8     | 9.2     | 14.3    | 12.   | 15.   | +| Cavern reservoirs                  Billion m³   2.8      4.8      6.1      6.8      9.2      14.3    |  15.    15.   | 
-| Porous-rock reservoirs            | Billion m3  | 5.2     | 8.5     | 12.5    | 12.4    | 12.1    | 9.8     9.    | 8.6     |+| Porous-rock reservoirs            |  Billion m³   5.2      8.5      12.5    |  12.4    |  12.1    |  9.8      8.    |  8.6     |
  
 Most of the gas extracted in Germany is moved via pipelines from gas fields and their pumping stations (either on land or off the coast). Imported gas is also transported mainly via pipelines. Most of the gas extracted in Germany is moved via pipelines from gas fields and their pumping stations (either on land or off the coast). Imported gas is also transported mainly via pipelines.
  
-The emission factor for underground natural gas storage was derived via surveys of operators and analysis of statistics on accidents / incidents [7], and it is valid for porous storage and cavern-storage facilities. It is seen as very conservative. The emission factor for the compressor systems and the sliding sleeve hubs has been obtained from the research project [3].+The emission factor for underground natural gas storage was derived via surveys of operators and analysis of statistics on accidents / incidents [(LANGER2012)], and it is valid for porous storage and cavern-storage facilities. It is seen as very conservative. The emission factor for the compressor systems and the sliding sleeve hubs has been obtained from the research project [(ZOELLNER2014)].
  
-^ Source of emission factor                          ^ Substance  Unit         Value  | +^ Source of emission factor                          ^  Substance  ^  Unit         ^  Value  ^ 
-| Long-distance high-pressure pipeline               | NMVOC      | kg/km        | 3,973  | +| Long-distance high-pressure pipeline                NMVOC      |  kg/km        |  3,973  | 
-| Compressors                                        | NMVOC      | kg/MW        | 550    | +| Compressors                                        |  NMVOC      |  kg/MW        |  550    | 
-| Sliding sleeve hub                                 | NMVOC      | kg/m³        | 825    | +| Sliding sleeve hub                                  NMVOC      |  kg/m³        |  825    | 
-| Systems for regulating and measuring gas pressure  | NMVOC      | kg/No        | 13,7   | +| Systems for regulating and measuring gas pressure  NMVOC      |  kg/No        |  13,7   | 
-| Cavern reservoirs                                  | NMVOC      | kg/ 1000 m³  | 0,001  | +| Cavern reservoirs                                  |  NMVOC      |  kg/ 1000 m³  |  0,001  | 
-| Porous-rock reservoirs                             | NMVOC      | kg/ 1000 m³  | 0,001  | +| Porous-rock reservoirs                              NMVOC      |  kg/ 1000 m³  |  0,001  | 
-==== 1.B.2.b.v - Distribution ====+ 
 +===== 1.B.2.b.v - Distribution =====
  
 The emissions caused by gas distribution have decreased slightly, even though gas throughput has increased considerably and the distribution network has been enlarged considerably with respect to its size in 1990. One important reason for this improvement is that the gas-distribution network has been modernised, especially in eastern Germany. In particular, the share of grey cast-iron lines in the low-pressure network has been reduced, with such lines being supplanted by low-emissions plastic pipelines. Another reason for the reduction is that fugitive losses in distribution have been reduced through a range of technical improvements (tightly sealing fittings such as flanges, valves, pumps, compressors) undertaken in keeping with emissions-control provisions in relevant regulations (TA Luft (1986) and TA Luft (2002)). The emissions caused by gas distribution have decreased slightly, even though gas throughput has increased considerably and the distribution network has been enlarged considerably with respect to its size in 1990. One important reason for this improvement is that the gas-distribution network has been modernised, especially in eastern Germany. In particular, the share of grey cast-iron lines in the low-pressure network has been reduced, with such lines being supplanted by low-emissions plastic pipelines. Another reason for the reduction is that fugitive losses in distribution have been reduced through a range of technical improvements (tightly sealing fittings such as flanges, valves, pumps, compressors) undertaken in keeping with emissions-control provisions in relevant regulations (TA Luft (1986) and TA Luft (2002)).
  
-^                                         ^ Unit  1990      | 1995     2000     | 2005     | 2010     | 2015    | 2018     | 2019     | +^                                          Unit  ^  1990     ^  1995    ^  2000    ^  2005    ^  2010    ^  2015   ^  2019    ^  2020    ^ 
-| Distribution network of natural gas     | km    | 246,710   | 366,987  | 362,388  | 402,391  | 471,886  | 474,57  488,292  | 493,175  | +| Distribution network of natural gas      km    |  246,710  |  366,987 |  362,388 |  402,391 |  471,886 |  474,57 |  489,100 |  492,500 
-| Number of natural-gas-powered vehicles  | No    | -.-       | -.-      | 7,500    | 28,500   | 90,000   | 97,804  96,531   98,460   |+| Number of natural-gas-powered vehicles  No    |  -.-       -.-        7,500 |   28,500 |   90,000 |  97,804 |   98,460 |  100,807 |
  
 **Pipeline network** **Pipeline network**
  
-The calculation was carried out using the Tier 3 method, on the basis of the available network statistics of the German Association of Energy and Water Industries (BDEW) [8] and of own surveys. In the early 1990s, emissions from distribution of town gas were also taken into account in calculations. In 1990, the town gas distribution network accounted for a total of 16 % of the entire gas network. Of that share, 15 % consisted of grey cast-iron lines and 85 % consisted of steel and ductile cast-iron lines.  +The calculation was carried out using the Tier 3 method, on the basis of the available network statistics of the German Association of Energy and Water Industries (BDEW) [(BDEW2016)] and of own surveys. In the early 1990s, emissions from distribution of town gas were also taken into account in calculations. In 1990, the town gas distribution network accounted for a total of 16 % of the entire gas network. Of that share, 15 % consisted of grey cast-iron lines and 85 % consisted of steel and ductile cast-iron lines.  
-The emission factors for the distribution network were verified in 2012 [9] and 2014 [10].+The emission factors for the distribution network were verified in 2012 [(GOTTWALD2012)] and 2014 [(MUELLERSYRING2014)].
  
 **Storage reservoirs** **Storage reservoirs**
  
-Man-made above-ground storage facilities, for storage of medium-sized quantities of natural gas, help meet and balance rapid fluctuations in demand. In Germany, spherical and pipe storage tanks, and other types of low-pressure containers, are used for this purpose. Results from a relevant research project [7] have made it possible to derive new country-specific emission factors for this area. The emissions have been calculated in accordance with the Tier 2 method.+Man-made above-ground storage facilities, for storage of medium-sized quantities of natural gas, help meet and balance rapid fluctuations in demand. In Germany, spherical and pipe storage tanks, and other types of low-pressure containers, are used for this purpose. Results from a relevant research project [(LANGER2012)] have made it possible to derive new country-specific emission factors for this area. The emissions have been calculated in accordance with the Tier 2 method.
  
 **Natural-gas-powered vehicles, and CNG fuelling stations** **Natural-gas-powered vehicles, and CNG fuelling stations**
  
-Use of vehicles running on natural gas continues to increase in Germany. Such vehicles are refuelled at CNG fuelling stations connected to the public gas network. In such refuelling, compressors move gas from high-pressure on-site tanks. Some 900 CNG fuelling stations are now in operation nationwide [7]. In keeping with the stringent safety standards applying to refuelling operations and to the tanks themselves, the pertinent emissions are very low. In the main, emissions result via tank pressure tests and emptying processes. +Use of vehicles running on natural gas continues to increase in Germany. Such vehicles are refuelled at CNG fuelling stations connected to the public gas network. In such refuelling, compressors move gas from high-pressure on-site tanks. Some 900 CNG fuelling stations are now in operation nationwide [(LANGER2012)]. In keeping with the stringent safety standards applying to refuelling operations and to the tanks themselves, the pertinent emissions are very low. In the main, emissions result via tank pressure tests and emptying processes. 
  
 **Liquefied natural gas (LNG)** **Liquefied natural gas (LNG)**
  
-Natural gas can be liquefied, at a temperature of -161°C, for ease of transport. The liquefaction process is highly energy-intensive, however, and is normally used only in connection with long-distance transports. Germany has no LNG terminals at present [7]. Gas imports arrive mostly in gaseous form, via long-distance pipelines, and they are included in 1.B.2.b.iv. +Natural gas can be liquefied, at a temperature of -161°C, for ease of transport. The liquefaction process is highly energy-intensive, however, and is normally used only in connection with long-distance transports. Germany has no LNG terminals at present [(LANGER2012)]. Gas imports arrive mostly in gaseous form, via long-distance pipelines, and they are included in 1.B.2.b.iv. 
-Germany now has one natural gas liquefaction facility and two satellite LNG storage facilities. Since the storage and transfer processes at those facilities are subject to the most stringent standards possible, emissions there can be ruled out. Gas can escape only in connection with maintenance work, and the gas quantities involved are extremely small. The quantities do not exceed more than a few hundred kilograms [7].+Germany now has one natural gas liquefaction facility and two satellite LNG storage facilities. Since the storage and transfer processes at those facilities are subject to the most stringent standards possible, emissions there can be ruled out. Gas can escape only in connection with maintenance work, and the gas quantities involved are extremely small. The quantities do not exceed more than a few hundred kilograms [(LANGER2012)].
  
-^ Source of emission factor                                     ^ Substance  Unit         Value   | +^ Source of emission factor                                      Substance  ^  Unit         ^  Value   ^ 
-| Low-pressure pipeline made of steel and ductile cast iron     | NMVOC      | kg/km        | 9.3     | +| Low-pressure pipeline made of steel and ductile cast iron      NMVOC      |  kg/km        |  9.3     | 
-| Low-pressure plastic pipeline                                 | NMVOC      | kg/km        | 1,275   | +| Low-pressure plastic pipeline                                  NMVOC      |  kg/km        |  1,275   | 
-| Low-pressure grey-cast-iron pipeline                          | NMVOC      | kg/km        | 11,125 +| Low-pressure grey-cast-iron pipeline                          |  NMVOC      |  kg/km        |  11,125 
-| Medium-pressure pipeline made of steel and ductile cast iron  | NMVOC      | kg/km        | 5,175   | +| Medium-pressure pipeline made of steel and ductile cast iron  |  NMVOC      |  kg/km        |  5,175   | 
-| Medium-pressure plastic pipeline                              | NMVOC      | kg/km        | 0.7     | +| Medium-pressure plastic pipeline                              |  NMVOC      |  kg/km        |  0.7     | 
-| High-pressure pipeline made of steel and ductile cast iron    | NMVOC      | kg/km        | 1.55    | +| High-pressure pipeline made of steel and ductile cast iron    |  NMVOC      |  kg/km        |  1.55    | 
-| High-pressure plastic pipeline                                | NMVOC      | kg/km        | 0.008   | +| High-pressure plastic pipeline                                |  NMVOC      |  kg/km        |  0.008   | 
-| Above-ground storage facilities                               | NMVOC      | kg/ 1000 m3  | 0.125   |+| Above-ground storage facilities                                NMVOC      |  kg/ 1000 m³   0.125   |
  
 +<WRAP center round info 80%>
 +In the 1990s, town gas (=coal gas) was supplied to households via distribution systems in East Germany and West-Berlin. The composition of coal gas varied in the different regions, consisting of hydrogen, carbon monoxide, methane and nitrogene. 
 +</WRAP>
  
-==== 1.B.2.b.vi - Distribution ====+==== 1.B.2.b.vi - Post-Meter Emissions ====
  
  
-The category describes emissions from leakage in the industrial sector and in the residential and institutional/commercial sectors. The activity data is based on results of the German Association of Energy and Water Industries (BDEW) [8] and of own surveys. The BDEW gas statistics appear with a time lag of up to three years. Data of the Working Group on Energy Balances (AGEB) [11] is used to bridge the resulting gap.+The category describes emissions from leakage in the industrial sector and in the residential and institutional/commercial sectors. The activity data is based on results of the German Association of Energy and Water Industries (BDEW) [(BDEW2016)] and of own surveys. The BDEW gas statistics appear with a time lag of up to three years. Data of the Working Group on Energy Balances (AGEB) [(AGEB2019a)] is used to bridge the resulting gap.
  
-^ activity data                                                        ^ Unit     1990  1995  2000  2005  2010  2015  | 2018  2019   | +^ activity data                                                        ^  Unit     ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015   2019   2020  ^ 
-| Gas meters in the residential and institutional / commercial sector  | Million  | 10.3  | 12.7  | 12.8  | 13.3  | 12.9  | 13    | 13.1  | 13.1   +| Gas meters in the residential and institutional / commercial sector  Million  10.3  |  12.7  |  12.8  |  13.3  |  12.9  |  13.0   13.1  |  13.1  
-| Energy consumption of the industry                                   | TWh      | 323   | 361   | 370   | 399   | 335   | 377   391   | 426.5  |+| Energy consumption of the industry                                    TWh      |  323    361    370    399    335    377    420   |  408   |
  
-The emission factors are country-specific, and they were determined via the research project "Methane emissions via gas use in Germany from 1990 to 1997, with an outlook for 2010" ( Methanemissionen durch den Einsatz von Gas in Deutschland von 1990 bis 1997 mit einem Ausblick auf 2010) Fraunhofer ISI (2000) [12]. To receive appropriate NMVOC emission factors the gas composition was considered. +The emission factors are country-specific, and they were determined via the research project "Methane emissions via gas use in Germany from 1990 to 1997, with an outlook for 2010" ( Methanemissionen durch den Einsatz von Gas in Deutschland von 1990 bis 1997 mit einem Ausblick auf 2010) Fraunhofer ISI (2000) [(REICHERTSCHOEN2020)]. Pursuant to Arbeitsblatt [Worksheet] G 600(Technische Regel fuer Gasinstallationen [(DVGW2018)] of the German Technical and Scientific Association for Gas and Water (DVGW), a leakage rate of 0-1 l CH4/h has no affect on an installation's functionality. When a leak test shows that an installation is leaking a rate higher than that figure, the installation has to be repaired within the short term. National experts thus consider a value of 2 m³ CH4/year to be suitable. To receive appropriate NMVOC emission factors the gas composition was considered. 
  
-^ Source of emission factor                                                        ^ Substance  Unit     Value       | +^ Source of emission factor                                                        ^  Substance  ^  Unit     ^  Value       ^ 
-| Gas meters and fittings in the residential and institutional/commercial sectors  | NMVOC      | m3 / No  | 0.045       | +| Gas meters and fittings in the residential and institutional/commercial sectors  NMVOC      |  m³ / No  |  0.045       | 
-| Fittings in industrial facilities                                                | NMVOC      | m3m3   | 0.00001025  | +| Fittings in industrial facilities                                                |  NMVOC      |  m³m³   |  0.00001025  |
-===== References =====+
  
  
 +===== Recalculations =====
  
 +Please refer to overarching chapter [[sector:energy:fugitive:start|1.B - Fugitive Emissions from fossil fuels]]
  
-  * [1] WEG (2008). Report of the Association of Oil and Gas Producing "Erdgas – Erdöl. Entstehung-Suche-Förderung", Hannover, 34 S. Click here +===== Planned improvements =====
-  * [2] EXXON (2014). Förderung von Erdgas in Deutschland. Click here +
-  * [3] Zöllner, S. (2014). Überführung der Bestands- und Ereignisdaten des DVGW in die Emissionsdatenbank des Umweltbundesamts. +
-  * [4] GASUNIE (2014). Verdichterstationen. Click here +
-  * [5] Ohlen, N. v. (2019). Umsetzungsbericht zum Netzentwicklungsplan Gas 2018-2028 der Fernleitungsnetzbetreiber. Click here +
-  * [6] Grosse, C. (2019). Qualitätsprüfung der Texte für den nationalen Inventarbericht und Datenerhebung in der Quellgruppe.1.B.2.b (PNr. 1252 30). +
-  * [7] Langer, B. u. (2012). Ermittlung von Emissionsfaktoren und Aktivitätsraten im Bereich IPCC (1996) 1.B.2.b.iii (Bericht Nr. M96023/01, UBA FKZ 360 16 035). +
-  * [8] German Association of Energy and Water Industries (BDEW) (2016). 2016 Gas Statistics “Gasstatistik 2016”.  +
-  * [9] Gottwald, Müller-Syring, & Hilbich (2012). Verbesserung der Treibhausgasemissions-berichterstattung im Bereich "Gas, Verteilung" durch Datenerhebung und Datenbereitstellung. +
-  * [10] Müller-Syring, & Schütz (2014). THG-Minderungspotenziale in der europäischen Gasinfrastruktur. +
-  * [11] AGEB (2019a). Energieverbrauch in Deutschland im Jahr 2018. Press release. +
-  * [12] Reichert, J, Schön, M (2000). Methanemissionen durch den Einsatz von Gas in Deutschland von 1990 bis 1997 mit einem Ausblick auf 2010. Fraunhofer ISI (2000).+
  
 +Emission factors from natural gas transmission and distribution will be updated according to results of measurement programms 
 +
 +===== References =====
  
 +[(WEG2008>WEG (2008). Report of the Association of Oil and Gas Producing "Erdgas – Erdöl. Entstehung-Suche-Förderung", Hannover, 34 S. [[https://web.archive.org/web/20220119003912/https://www.bveg.de/content/download/1990/11317/file/Erdgas%20Erd%C3%B6l%20Entstehung%20Suche%20F%C3%B6rderung.pdf|External Link, PDF]] )]
 +[(EXXON2014>EXXON (2014). Förderung von Erdgas in Deutschland.)]
 +[(ZOELLNER2014>Zöllner, S. (2014). Überführung der Bestands- und Ereignisdaten des DVGW in die Emissionsdatenbank des Umweltbundesamts. )]
 +[(GASUNIE2014>GASUNIE (2014). Verdichterstationen.)]
 +[(OHLEN2019>Ohlen, N. v. (2019). Umsetzungsbericht zum Netzentwicklungsplan Gas 2018-2028 der Fernleitungsnetzbetreiber. [[https://fnb-gas.de/wp-content/uploads/2021/09/2019_04_01_umsetzungsbericht_2019_1.pdf|External Link, PDF]] )]
 +[(GROSSE2019>Grosse, C. (2019). Qualitätsprüfung der Texte für den nationalen Inventarbericht und Datenerhebung in der Quellgruppe.1.B.2.b (PNr. 1252 30).)]
 +[(LANGER2012>Langer, B. u. (2012). Ermittlung von Emissionsfaktoren und Aktivitätsraten im Bereich IPCC (1996) 1.B.2.b.iii (Bericht Nr. M96023/01, UBA FKZ 360 16 035).)]
 +[(BDEW2016>German Association of Energy and Water Industries (BDEW) (2016). 2016 Gas Statistics “Gasstatistik 2016”. )]
 +[(GOTTWALD2012>Gottwald, Müller-Syring, & Hilbich (2012). Verbesserung der Treibhausgasemissions-berichterstattung im Bereich "Gas, Verteilung" durch Datenerhebung und Datenbereitstellung. )]
 +[(MUELLERSYRING2014>Müller-Syring, & Schütz (2014). THG-Minderungspotenziale in der europäischen Gasinfrastruktur.)]
 +[(AGEB2019a>AGEB (2019a). Energieverbrauch in Deutschland im Jahr 2018. [[https://ag-energiebilanzen.de/index.php?article_id=29&fileName=ageb_jahresbericht2018_20190326_dt.pdf|External Link]] )]
 +[(REICHERTSCHOEN2020>Reichert, J, Schön, M (2000). Methanemissionen durch den Einsatz von Gas in Deutschland von 1990 bis 1997 mit einem Ausblick auf 2010. Fraunhofer ISI (2000).)]
 +[(DVGW2018>DVGW. GI - G 600 Arbeitsblatt 2018, published by DVGW (2018) [[https://www.dvgw.de/leistungen/regeln-und-normen|External Link]] )]