meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:energy:fugitive:gas:start [2021/03/19 09:01] – [References] boettchersector:energy:fugitive:gas:start [2022/09/22 09:06] (current) – Fix link tarakji
Line 4: Line 4:
 | 1.B.2.b        |  T2, T3, M              |||||  AS              |||||  CS              ||||| | 1.B.2.b        |  T2, T3, M              |||||  AS              |||||  CS              |||||
  
-^  Key Category  ^  SO₂     ^  NOₓ  ^  NH₃  ^  NMVOC  ^  CO   ^  BC   ^  Pb   ^  Hg   ^  Cd   ^  Diox  ^  PAH  ^  HCB  ^  TSP  ^  PM₁₀  ^  PM₂ ₅  ^ +^  Key Category  ^  NOx  ^  NMVOC  ^  SO2  ^  NH3  ^  PM2_5  ^  PM10  ^  TSP  ^  BC  ^  CO   ^  PB  ^  Cd  ^  Hg  ^  Diox  ^  PAH  ^  HCB  ^ 
-| 1.B.2.b         |  -/-         -/-  |  -    |  -/-    |  -/-  |  -    |  -    |  -    |  -    |  -     |  -    |  -    |  -    |  -          |+| 1.B.2.b        |  -/-  |  -/-    |  -/-  |  -    |  -      |  -     |  -    |  -   |  -/-  |  -   |  -   |  -   |  -         -    |
  
 . .
Line 20: Line 20:
 The emissions of source category 1.B.2.b.ii consist of emissions related to production. Since 1998, the Federal Association of the Natural gas, Oil and Geothermal Energy Industries (BVEG) has determined the emissions from production and published the relevant data in its statistical report.  The emissions of source category 1.B.2.b.ii consist of emissions related to production. Since 1998, the Federal Association of the Natural gas, Oil and Geothermal Energy Industries (BVEG) has determined the emissions from production and published the relevant data in its statistical report. 
  
-^ activity data                        Unit        ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2018  ^  2019  ^ +^ activity data                        Unit        ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2019  ^  2020  ^ 
-| produced quantities of natural gas  |  Billion m³  |   15.3 |   19.1 |   20.1 |   18.8 |   12.7 |    8.6 |    6.3 |    6.|+| produced quantities of natural gas  |  Billion m³  |   15.3 |   19.1 |   20.1 |   18.8 |   12.7 |    8.6 |    6.3 |    5.|
  
 ^ Source of emission factor  ^ Substance  ^ Unit         ^ Value  ^ ^ Source of emission factor  ^ Substance  ^ Unit         ^ Value  ^
Line 33: Line 33:
 The natural gas that leaves processing plants is ready for use. The hydrogen sulphide is converted into elementary sulphur and is used primarily by the chemical industry, as a basic raw material. The natural gas that leaves processing plants is ready for use. The hydrogen sulphide is converted into elementary sulphur and is used primarily by the chemical industry, as a basic raw material.
  
-^                                                  Unit  ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2018  ^  2019  ^ +^                                                  Unit  ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2019  ^  2020  ^ 
-| Sulphur production from natural gas production  |  kt    |    915 |  1,053 |  1,100 |  1,050 |    832 |    628 |    420 |    460 |+| Sulphur production from natural gas production  |  kt    |    915 |  1,053 |  1,100 |  1,050 |    832 |    628 |    460 |    353 |
  
 For processing of sour gas, data of the BVEG (the former WEG) for the period since 2000 are used. This data is the result of the BVEG members' own measurements and calculations. For calculation of emissions from sour-gas processing, a split factor of 0.4 relative to the activity data is applied. That split factor is based on the WEG report [1] on sour-gas processing. For processing of sour gas, data of the BVEG (the former WEG) for the period since 2000 are used. This data is the result of the BVEG members' own measurements and calculations. For calculation of emissions from sour-gas processing, a split factor of 0.4 relative to the activity data is applied. That split factor is based on the WEG report [1] on sour-gas processing.
  
 ^ Source of emission factor  ^  Substance  ^  Unit          Value  ^ ^ Source of emission factor  ^  Substance  ^  Unit          Value  ^
-| Treatment of sour gas      |  NMVOC      |  kg/ 1000 m³  | 0.004 | +| Treatment of sour gas      |  NMVOC      |  kg/ 1000 m³  | 0.004   
-| Treatment of sour gas      |  CO          |  kg/ 1000 m³   | 0.043   | +| Treatment of sour gas      |  CO         |  kg/ 1000 m³  | 0.043   | 
-| Treatment of sour gas      |  NOx         |  kg/ 1000 m³   | 0.011   | +| Treatment of sour gas      |  NOx        |  kg/ 1000 m³  | 0.011   | 
-| Treatment of sour gas      |  SO2         |  kg/ 1000 m³   | 0.14    |+| Treatment of sour gas      |  SO2        |  kg/ 1000 m³  | 0.140   |
  
  
Line 54: Line 54:
 In pipeline inspection and cleaning, tools known as pipeline inspection gauges ("pigs") are used. In a pipeline system, a pig moves, driven by the gas flow, from a launching station to a receiving station (pig trap). Systems for launching and catching pigs can be either fixed or portable. Small quantities of methane are emitted in both insertion and removal of pigs. In addition, pig traps can develop leaks. Normally, however, such traps are regularly monitored for leaks and repaired as necessary. Not all types of pipelines can be pigged; diameter reductions, isolation valves, bends, etc. in pipelines can block pigs. These emissions have been estimated in the framework of a study carried out by the firm of DBI Gas- und Umwelttechnik GmbH [(GROSSE2019)]. In pipeline inspection and cleaning, tools known as pipeline inspection gauges ("pigs") are used. In a pipeline system, a pig moves, driven by the gas flow, from a launching station to a receiving station (pig trap). Systems for launching and catching pigs can be either fixed or portable. Small quantities of methane are emitted in both insertion and removal of pigs. In addition, pig traps can develop leaks. Normally, however, such traps are regularly monitored for leaks and repaired as necessary. Not all types of pipelines can be pigged; diameter reductions, isolation valves, bends, etc. in pipelines can block pigs. These emissions have been estimated in the framework of a study carried out by the firm of DBI Gas- und Umwelttechnik GmbH [(GROSSE2019)].
  
-^                                    Unit        ^  1990    ^  1995    ^  2000    ^  2005    ^  2010    ^  2015    ^  2018    ^  2019    ^ +^                                    Unit        ^  1990    ^  1995    ^  2000    ^  2005    ^  2010    ^  2015    ^  2019    ^  2020    ^ 
-| Length of transmission pipelines  |  km          |  22,696  |  28,671  |  32,214  |  34,086  |  35,503  |  34,270  |  34,996  |  34,476  | +| Length of transmission pipelines  |  km          |  22,696  |  28,671  |  32,214  |  34,086  |  35,503  |  34,270  |  34,476  |  33,809  | 
-| Cavern reservoirs                  Billion m³  |  2.8      4.8      6.1      6.8      9.2      14.3    |  12.    15.   | +| Cavern reservoirs                  Billion m³  |  2.8      4.8      6.1      6.8      9.2      14.3    |  15.    15.   | 
-| Porous-rock reservoirs            |  Billion m³  |  5.2      8.5      12.5    |  12.4    |  12.1    |  9.8     |  9.    |  8.6     |+| Porous-rock reservoirs            |  Billion m³  |  5.2      8.5      12.5    |  12.4    |  12.1    |  9.8     |  8.    |  8.6     |
  
 Most of the gas extracted in Germany is moved via pipelines from gas fields and their pumping stations (either on land or off the coast). Imported gas is also transported mainly via pipelines. Most of the gas extracted in Germany is moved via pipelines from gas fields and their pumping stations (either on land or off the coast). Imported gas is also transported mainly via pipelines.
Line 75: Line 75:
 The emissions caused by gas distribution have decreased slightly, even though gas throughput has increased considerably and the distribution network has been enlarged considerably with respect to its size in 1990. One important reason for this improvement is that the gas-distribution network has been modernised, especially in eastern Germany. In particular, the share of grey cast-iron lines in the low-pressure network has been reduced, with such lines being supplanted by low-emissions plastic pipelines. Another reason for the reduction is that fugitive losses in distribution have been reduced through a range of technical improvements (tightly sealing fittings such as flanges, valves, pumps, compressors) undertaken in keeping with emissions-control provisions in relevant regulations (TA Luft (1986) and TA Luft (2002)). The emissions caused by gas distribution have decreased slightly, even though gas throughput has increased considerably and the distribution network has been enlarged considerably with respect to its size in 1990. One important reason for this improvement is that the gas-distribution network has been modernised, especially in eastern Germany. In particular, the share of grey cast-iron lines in the low-pressure network has been reduced, with such lines being supplanted by low-emissions plastic pipelines. Another reason for the reduction is that fugitive losses in distribution have been reduced through a range of technical improvements (tightly sealing fittings such as flanges, valves, pumps, compressors) undertaken in keeping with emissions-control provisions in relevant regulations (TA Luft (1986) and TA Luft (2002)).
  
-^                                          Unit  ^  1990      1995    ^  2000    ^  2005    ^  2010    ^  2015   ^  2018    ^  2019    ^ +^                                          Unit  ^  1990      1995    ^  2000    ^  2005    ^  2010    ^  2015   ^  2019    ^  2020    ^ 
-| Distribution network of natural gas      km    |  246,710  |  366,987 |  362,388 |  402,391 |  471,886 |  474,57 |  488,292 |  493,175 +| Distribution network of natural gas      km    |  246,710  |  366,987 |  362,388 |  402,391 |  471,886 |  474,57 |  489,100 |  492,500 
-| Number of natural-gas-powered vehicles  |  No    |  -.-      |  -.-     |    7,500 |   28,500 |   90,000 |  97,804 |   96,531 |   98,460 |+| Number of natural-gas-powered vehicles  |  No    |  -.-      |  -.-     |    7,500 |   28,500 |   90,000 |  97,804 |   98,460 |  100,807 |
  
 **Pipeline network** **Pipeline network**
Line 116: Line 116:
 The category describes emissions from leakage in the industrial sector and in the residential and institutional/commercial sectors. The activity data is based on results of the German Association of Energy and Water Industries (BDEW) [(BDEW2016)] and of own surveys. The BDEW gas statistics appear with a time lag of up to three years. Data of the Working Group on Energy Balances (AGEB) [(AGEB2019a)] is used to bridge the resulting gap. The category describes emissions from leakage in the industrial sector and in the residential and institutional/commercial sectors. The activity data is based on results of the German Association of Energy and Water Industries (BDEW) [(BDEW2016)] and of own surveys. The BDEW gas statistics appear with a time lag of up to three years. Data of the Working Group on Energy Balances (AGEB) [(AGEB2019a)] is used to bridge the resulting gap.
  
-^ activity data                                                        ^  Unit      1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2018  ^  2019   +^ activity data                                                        ^  Unit      1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2019  ^  2020  
-| Gas meters in the residential and institutional / commercial sector  |  Million  |  10.3  |  12.7  |  12.8  |  13.3  |  12.9  |  13    |  13.1  |  13.1   +| Gas meters in the residential and institutional / commercial sector  |  Million  |  10.3  |  12.7  |  12.8  |  13.3  |  12.9  |  13.0  |  13.1  |  13.1  
-| Energy consumption of the industry                                    TWh      |  323    361    370    399    335    377   |  391   |  426.5  |+| Energy consumption of the industry                                    TWh      |  323    361    370    399    335    377   |  420   |  408   |
  
-The emission factors are country-specific, and they were determined via the research project "Methane emissions via gas use in Germany from 1990 to 1997, with an outlook for 2010" ( Methanemissionen durch den Einsatz von Gas in Deutschland von 1990 bis 1997 mit einem Ausblick auf 2010) Fraunhofer ISI (2000) [(REICHERTSCHOEN2020)]. Pursuant to Arbeitsblatt [Worksheet] G 600(Technische Regel fuer Gasinstallationen [(DVGW)] of the German Technical and Scientific Association for Gas and Water (DVGW), a leakage rate of 0-1 l CH4/h has no affect on an installation's functionality. When a leak test shows that an installation is leaking a rate higher than that figure, the installation has to be repaired within the short term. National experts thus consider a value of 2 m³ Ch4/year to be suitable. To receive appropriate NMVOC emission factors the gas composition was considered. +The emission factors are country-specific, and they were determined via the research project "Methane emissions via gas use in Germany from 1990 to 1997, with an outlook for 2010" ( Methanemissionen durch den Einsatz von Gas in Deutschland von 1990 bis 1997 mit einem Ausblick auf 2010) Fraunhofer ISI (2000) [(REICHERTSCHOEN2020)]. Pursuant to Arbeitsblatt [Worksheet] G 600(Technische Regel fuer Gasinstallationen [(DVGW2018)] of the German Technical and Scientific Association for Gas and Water (DVGW), a leakage rate of 0-1 l CH4/h has no affect on an installation's functionality. When a leak test shows that an installation is leaking a rate higher than that figure, the installation has to be repaired within the short term. National experts thus consider a value of 2 m³ CH4/year to be suitable. To receive appropriate NMVOC emission factors the gas composition was considered. 
  
 ^ Source of emission factor                                                        ^  Substance  ^  Unit      Value       ^ ^ Source of emission factor                                                        ^  Substance  ^  Unit      Value       ^
Line 129: Line 129:
 ===== Recalculations ===== ===== Recalculations =====
  
-will be published later - in meantime please refer to chapter 8."recalculations"+Please refer to overarching chapter [[sector:energy:fugitive:start|1.B - Fugitive Emissions from fossil fuels]]
  
 ===== Planned improvements ===== ===== Planned improvements =====
  
-Emission factors from natural gas transmission will be updated according to results of the UNEP OGMP 2.0 measurement programm (1.B.2.b.iv)+Emission factors from natural gas transmission and distribution will be updated according to results of measurement programms 
  
 ===== References ===== ===== References =====
  
-[(WEG2008>WEG (2008). Report of the Association of Oil and Gas Producing "Erdgas – Erdöl. Entstehung-Suche-Förderung", Hannover, 34 S. [[https://www.bveg.de/content/download/1990/11317/file/Erdgas%20Erd%C3%B6l%20Entstehung%20Suche%20F%C3%B6rderung.pdf|External Link, PDF]] )]+[(WEG2008>WEG (2008). Report of the Association of Oil and Gas Producing "Erdgas – Erdöl. Entstehung-Suche-Förderung", Hannover, 34 S. [[https://web.archive.org/web/20220119003912/https://www.bveg.de/content/download/1990/11317/file/Erdgas%20Erd%C3%B6l%20Entstehung%20Suche%20F%C3%B6rderung.pdf|External Link, PDF]] )]
 [(EXXON2014>EXXON (2014). Förderung von Erdgas in Deutschland.)] [(EXXON2014>EXXON (2014). Förderung von Erdgas in Deutschland.)]
 [(ZOELLNER2014>Zöllner, S. (2014). Überführung der Bestands- und Ereignisdaten des DVGW in die Emissionsdatenbank des Umweltbundesamts. )] [(ZOELLNER2014>Zöllner, S. (2014). Überführung der Bestands- und Ereignisdaten des DVGW in die Emissionsdatenbank des Umweltbundesamts. )]
 [(GASUNIE2014>GASUNIE (2014). Verdichterstationen.)] [(GASUNIE2014>GASUNIE (2014). Verdichterstationen.)]
-[(OHLEN2019>Ohlen, N. v. (2019). Umsetzungsbericht zum Netzentwicklungsplan Gas 2018-2028 der Fernleitungsnetzbetreiber. [[https://www.fnb-gas.de/media/2019_04_01_umsetzungsbericht_2019_1.pdf|External Link, PDF]] )]+[(OHLEN2019>Ohlen, N. v. (2019). Umsetzungsbericht zum Netzentwicklungsplan Gas 2018-2028 der Fernleitungsnetzbetreiber. [[https://fnb-gas.de/wp-content/uploads/2021/09/2019_04_01_umsetzungsbericht_2019_1.pdf|External Link, PDF]] )]
 [(GROSSE2019>Grosse, C. (2019). Qualitätsprüfung der Texte für den nationalen Inventarbericht und Datenerhebung in der Quellgruppe.1.B.2.b (PNr. 1252 30).)] [(GROSSE2019>Grosse, C. (2019). Qualitätsprüfung der Texte für den nationalen Inventarbericht und Datenerhebung in der Quellgruppe.1.B.2.b (PNr. 1252 30).)]
 [(LANGER2012>Langer, B. u. (2012). Ermittlung von Emissionsfaktoren und Aktivitätsraten im Bereich IPCC (1996) 1.B.2.b.iii (Bericht Nr. M96023/01, UBA FKZ 360 16 035).)] [(LANGER2012>Langer, B. u. (2012). Ermittlung von Emissionsfaktoren und Aktivitätsraten im Bereich IPCC (1996) 1.B.2.b.iii (Bericht Nr. M96023/01, UBA FKZ 360 16 035).)]
Line 149: Line 149:
 [(AGEB2019a>AGEB (2019a). Energieverbrauch in Deutschland im Jahr 2018. [[https://ag-energiebilanzen.de/index.php?article_id=29&fileName=ageb_jahresbericht2018_20190326_dt.pdf|External Link]] )] [(AGEB2019a>AGEB (2019a). Energieverbrauch in Deutschland im Jahr 2018. [[https://ag-energiebilanzen.de/index.php?article_id=29&fileName=ageb_jahresbericht2018_20190326_dt.pdf|External Link]] )]
 [(REICHERTSCHOEN2020>Reichert, J, Schön, M (2000). Methanemissionen durch den Einsatz von Gas in Deutschland von 1990 bis 1997 mit einem Ausblick auf 2010. Fraunhofer ISI (2000).)] [(REICHERTSCHOEN2020>Reichert, J, Schön, M (2000). Methanemissionen durch den Einsatz von Gas in Deutschland von 1990 bis 1997 mit einem Ausblick auf 2010. Fraunhofer ISI (2000).)]
-[(DVGW)>TRGI - G 600 Arbeitsblatt 2018, published by DVGW (2018). )] +[(DVGW2018>DVGW. GI - G 600 Arbeitsblatt 2018, published by DVGW (2018) [[https://www.dvgw.de/leistungen/regeln-und-normen|External Link]] )]