meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:natural_sources:forest_fires:start [2021/01/21 14:15] – [Methodology] doeringsector:natural_sources:forest_fires:start [2023/05/04 06:12] (current) – [Table] kotzulla
Line 8: Line 8:
 |  CS, T2, T1  |  CS  |  D    //not included in key category analysis//  | |  CS, T2, T1  |  CS  |  D    //not included in key category analysis//  |
  
-Category //11.B – Forest fires// include emissions from forest fires occurring naturally or caused by humans.+<hidden>
  
-In Germany’s forests prescribed burning is not applied. Therefore, all forest fires are categorized as wildfires. Note that emissions reported here are not accounted for the national totals.+---- 
 +Legend 
 +T = key source by Trend / L = key source by Level
  
 +----
  
-===== Methodology =====+//Methods//  
 +D: Default 
 +RA: Reference Approach 
 +T1: Tier 1 / Simple Methodology 
 +T2: Tier 2* 
 +T3: Tier 3 / Detailed Methodology * 
 +C: CORINAIR 
 +CS: Country Specific 
 +M: Model 
 +as described in the EMEP/CORINAIR Emission Inventory Guidebook - 2019, in the group specific chapters.
  
-For calculating the emissions of wildfires a country specific Tier2 approach was used. The mass of carbon emitted M(C) was calculated using the adapted equation follows the methodology of Seiler and Crutzen (1980) [((bibcite 4))]. +----
  
-{{ :sector:natural_sources:forest_fire.png?nolink&400}}+//AD:- Data Source for Activity Data // 
 +NS: National Statistics 
 +RS: Regional Statistics 
 +IS: International Statistics 
 +PS: Plant Specific data 
 +AS: Associations, business organisations 
 +Q: specific questionnaires, surveys
  
-//M(C) = 0.45 * A * B * β//+----
  
 +//EF - Emission Factors//
 +D: Default (EMEP Guidebook)
 +C: Confidential
 +CS: Country Specific
 +PS: Plant Specific data</hidden>
  
-where:+----
  
-0.45 average fraction of carbon in fuel wood;+====== Country specifics ======
  
-A = forest area burnt in [m²]; 
  
-B = mean above-ground biomass of fuel material per unit area in [kg/m²];+===== Category 11.– Forest fires =====
  
-β = burning efficiency (fraction burntof the above-ground biomass.+In Germany’s forests prescribed burning is not applied. Therefore, all forest fires are categorized as wildfires (include emissions from forest fires occurring naturally or caused by humans)Note that emissions reported here are not accounted for the national totals.
  
-The data on forest areas burnt for the period 1990 to 2018 have been taken from the German forest fire statistic (BLE, 2020) [((bibcite 1))]  managed by the Federal Agency for Agriculture and Food. The mean above-ground biomass was derived for each year by linear extrapolation and interpolation between the German National Forest Inventorys of 1987, 2002, 2012 (Bundeswaldinventuren 1987, 2002, 2012), the inventory study 2008 ([https://www.thuenen.de/en/wo/projects/forest-monitoring/greenhouse-gas-inventory-for-forests/inventory-study-2008/ Inventurstudie 2008]) and the carbon inventory 2017 ([https://www.thuenen.de/en/wo/projects/forest-monitoring/greenhouse-gas-inventory-for-forests/carbon-inventory-2017/ Kohlenstoffinventur 2017]). Pursuant to König (2007) [((bibcite 3))], 80% of the forest fires in Germany are surface fires and 20% crown fires. In accordance to the IPCC Good Practice Guidance for LULUCF (2003) a burning efficiency of 0.15 was used for surface fires and an efficiency of 0.45 was used for crown fires.  
  
-The emissions for the pollutants were calculated by multiplying the mass of carbon with the respective emission factors from table 3-3 (EMEP/EEA, 2019) [((bibcite 2))].+==== Methodology ====
  
-For the calculation of particulate emissions (TSPPM<sub>10</sub> and PM<sub>2.5</sub>the burnt biomass was multiplied with the respective emission factors from table 3-5 (EMEP/EEA, 2019). Those particulate emission factors have been estimated by averaging the emission factors from the US Environmental Protection Agency (USEPA, 1996[((bibcite 5))] methodology, since no better information is available. Those emission factors are assumed to be the same for all types of forest+For calculating the emissions of wildfires a country specific Tier2 approach was used. The mass of carbon emitted M(C) was calculated using the adapted equation follows the methodology of Seiler and Crutzen (1980) ((Seiler, Wolfgang, and Paul JCrutzen. "Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning." Climatic change 2.3 (1980): 207-247.)). 
  
-The Guidebook does not indicate whether EFs have considered the condensable component (with or without).+{{ :sector:natural_sources:forest_fire.png?nolink&400}}
  
-As a first estimate black carbon emissions are reported the first time.+//M(C) = 0.45 * A * B * β//
  
-=== Activity data === 
  
-The data on forest areas burnt for the period 1990 to 2019 are based on the German forest fire statistic (BLE, 2020) managed by the Federal Agency for Agriculture and Food.+where:
  
-__Table 1: Area of forest burnt, in [ha]__+0.45 = average fraction of carbon in fuel wood;
  
 +A = forest area burnt in [m²];
  
 +B = mean above-ground biomass of fuel material per unit area in [kg/m²];
  
-^                        1990  ^  1991  ^  1992  ^  1993  ^  1994  ^  1995  ^  1996  ^  1997  ^  1998  ^  1999  ^  2000  ^ +β = burning efficiency (fraction burnt) of the above-ground biomass.
-| Area of forest burnt    1606 |    920 |   4908 |   1493 |   1114 |    592 |   1381 |    599 |    397 |    415 |    581 |+
  
 +The data on forest areas burnt for the period 1990 to 2020 have been taken from the German forest fire statistic (BLE, 2021)((BLE (Bundesanstalt für Landwirtschaft und Ernährung), (2021, 28. Juni), 2021: Waldbrandstatistik der Bundesrepublik Deutschland für das Jahr 2020, Bonn: 21 p. Retrieved July 2021, https://www.ble.de/DE/BZL/Daten-Berichte/Wald/wald_node.html)) managed by the Federal Agency for Agriculture and Food. The mean above-ground biomass was derived for each year by linear extrapolation and interpolation between the
  
 +     * German National Forest Inventorys of 1987, 2002, 2012 (Bundeswaldinventuren 1987, 2002, 2012), 
 +     * [[https://www.thuenen.de/en/institutes/forest-ecosystems/projects/forest-monitoring/greenhouse-gas-inventory-for-forests/inventory-study-2008|the inventory study 2008]] and,
 +     * [[https://www.thuenen.de/en/institutes/forest-ecosystems/projects/forest-monitoring/greenhouse-gas-inventory-for-forests/carbon-inventory-2017|the carbon inventory 2017]]. 
 + 
 +Pursuant to König (2007) ((König, H.-C., 2007. Waldbrandschutz - Kompendium für Forst und Feuerwehr. 1. Fachverlag Matthias Grimm, Berlin, 197 S.)), 80% of the forest fires in Germany are surface fires and 20% crown fires. In accordance to the IPCC Good Practice Guidance for LULUCF (2003) a burning efficiency of 0.15 was used for surface fires and an efficiency of 0.45 was used for crown fires. 
  
-^                        2001  ^  2002  ^  2003  ^  2004  ^  2005  ^  2006  ^  2007  ^  2008  ^  2009  ^  2010  ^  2011  ^ +The emissions for the pollutants were calculated by multiplying the mass of carbon with the respective emission factors from table 3-3 (EMEP/EEA, 2019)((EMEP/EEA, 2019: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/11-natural-sources/11-b-forest-fires/view)).
-| Area of forest burnt  |    122 |    122 |   1315 |    274 |    183 |    482 |    256 |    539 |    757 |    522 |    214 |+
  
 +For the calculation of particulate emissions (TSP, PM<sub>10</sub> and PM<sub>2.5</sub>) the burnt biomass was multiplied with the respective emission factors from table 3-5 (EMEP/EEA, 2019). Those particulate emission factors have been estimated by averaging the emission factors from the US Environmental Protection Agency (USEPA, 1996) ((USEPA, 1996: Compilation of Air Pollutant Emission Factors Vol.1. Stationary, Point and Area Sources. Report AP-42, fifth edition)) methodology, since no better information is available. Those emission factors are assumed to be the same for all types of forest. 
  
-^                        1990  ^  1991  ^  1992  ^  1993  ^  1994  ^  1995  ^  1996  ^  1997  ^  1998  ^  1999  ^  2000  ^ +The Guidebook does not indicate whether EFs have considered the condensable component (with or without).
-| Area of forest burnt  |   1606 |    920 |   4908 |   1493 |   1114 |    592 |   1381 |    599 |    397 |    415 |    581 |+
  
 +==== Activity data ====
 + 
  
 +The data on forest areas burnt for the period 1990 to 2020 are based on the German forest fire statistic (BLE, 2021) managed by the Federal Agency for Agriculture and Food.
  
 +__Table 1: Area of forest burnt from 1990 until the latest reporting year, in [ha]__
  
  
-=== Emission factors === 
  
-For the year 2018 the estimated emission factors from table were applied.+^  1990    1991  ^  1992    1993    1994    1995  ^  1996    1997  ^  1998    1999   ^ 
 +|  1,606  |  920    4,908  |  1,493  |  1,114  |  592    1,381  |  599    397    |  415    | 
 +^  2000    2001  ^  2002    2003    2004    2005  ^  2006    2007  ^  2008    2009   ^ 
 +|  581    |  122    122    |  1,315  |  274    |  183    482    |  256    539    |  757    | 
 +^  2010    2011  ^  2012    2013    2014    2015  ^  2016    2017  ^  2018   ^  2019   ^ 
 +|  522    |  214    269    |  199    |  120    |  526    283    |  395   |  2,349  |  2,711  | 
 +^  2020          |                                |                |                 | 
 +|  368    |        |                                |                |                 |
  
-__Table 2: Emission factors applied for 2018__ + 
-||~ Pollutant||~ EF,,2018,, [kg/ha forest area burnt]|| + 
-|NO,,x,, ||123.63|+==== Emission factors ==== 
-|CO ||> 4,409.60|+ 
-|NMVOC ||> 389.45|+For the year 2020 the following estimated emission factors were applied: 
-|SO,,x,, ||> 29.67|+ 
-|NH,,3,, ||> 33.38|+__Table 2: Emission factors applied for 2020in [kg/ha forest area burnt]__ 
-|TSP ||> 700.59|+^                    ^  EF<sub>2020</sub>  ^ 
-|PM,,10,, ||> 453.32|+ NO<sub>x</sub    125.96             
-|PM,,2.5,, ||> 370.90|+ CO                 4,492.47           
-|BC ||> 33.38||+ NMVOC              396.8              
 + SO<sub>x</sub>     30.23              
 + NH<sub>3</sub>     34.01              
 + TSP                713.76             
 + PM<sub>10</sub>    461.84             
 + PM<sub>2.5</sub>   377.87             
 + BC                 34.01              |
  
 In addition, a large-scale fire, which occurred in September 2018, is reported under 11.B. A detailed description can be found in the NIR In addition, a large-scale fire, which occurred in September 2018, is reported under 11.B. A detailed description can be found in the NIR
-2020 in Chapter 6.8.2.5 [((bibcite 6))], because a large amount of CO,,2,, emissions were released.+2020 in Chapter 6.8.2.5 ((NIR (2020): National Inventory Report 2020 for the German Greenhouse Gas Inventory 1990-2018. Available in April 2020)), because a large amount of CO<sub>2</sub> emissions were released. 
 + 
 +The burned area of the drained moorwhich is used as a military facilitycovered 1,221 ha. This fire was extensively investigated and documented by the Federal Office for InfrastructureEnvironmental Protection and Services of the German Armed Forces. The emissions are calculated according to IPCC GL (2006), chapter 2, form 2.27 ((IPCC (Intergovernmental Panel on Climate Change) (2006): 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use. Eds.: Eggleston S., Buendia L., Miwa K., Ngara T., Tanabe K. (Eds). IEA/OECD, IPCC National Greenhouse Gas Inventories Programme, Technical Support Unit, Hayama, Kanagawa, Japan. http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html)).
  
-The burned area of the drained moor, which is used as a military facility, covered 1,221 ha. This fire was extensively investigated and documented by the Federal Office for Infrastructure, Environmental Protection and Services of the German Armed Forces. The emissions are calculated according to IPCC GL (2006), chapter 2, form 2.27 [((bibcite 7))] . +The product M<sub>B</sub> × C<sub>f</sub> is set to 336 t d.m. ha<sup>-1</sup> according to Table 2.6 and equation 2.72013 IPCC Wetlands Supplement ((IPCC (Intergovernmental Panel on Climate Change) (2014b): 2013 Supplement to the IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G.(eds). Published: IPCC, Switzerland http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html)), i.e. it is assumed that the moor was completely drained during the fire.
-The product MB×Cf is set to 336 t dm ha-1 according to Table 2.6 and formula 2.7 2013 IPCC Wetlands Supplement [((bibcite 8))], i.e. it is assumed that the moor was completely drained during the fire.+
  
-For the calculation of CO emissions the EF according to Table 2.72013 IPCC Wetlands Supplement 207 g (kg dm)-1, is taken into accountThis results in 85 kt COFor other emissions from land fires on drained organic soils no Tier-1 emission factors exist and are therefore not reported (NO)".+<WRAP center round info 60%> 
 +  * M<sub>B</sub> = mass of fuel available for combustiontonnes ha-1 (i.emass of dry organic soil fuel)
  
 +  * C<sub>f</sub> = combustion factor, dimensionless
 +</WRAP>
  
-------+For the calculation of CO emissions the EF according to Table 2.7, 2013 IPCC Wetlands Supplement 207 g (kg dm)<sup>-1</sup>, is taken into account resulting in 85 kt of CO. 
  
-[[bibliography]] 
-: 1 : BLE (Bundesanstalt für Landwirtschaft und Ernährung), 2019: Waldbrandstatistik der Bundesrepublik Deutschland für das Jahr 2018, Bonn: 21 S. 
-: 2 : EMEP/EEA, 2013: [*https://www.eea.europa.eu/publications/emep-eea-guidebook-2013 EMEP/EEA air pollutant emission inventory guidebook – 2013. 11.B Forest Fires.] 
-: 3 : König, H.-C., 2007. Waldbrandschutz - Kompendium für Forst und Feuerwehr. 1. Fachverlag Matthias Grimm, Berlin, 197 S. 
-: 4 : Seiler, W., Crutzen P.J.: Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climate Change. 1980 
-: 5 : USEPA, 1996: Compilation of Air Pollutant Emission Factors Vol.1. Stationary, Point and Area Sources. Report AP-42 (fifth edition). 
-:6: NIR (2020): National Inventory Report 2020 for the German Greenhouse Gas Inventory 1990-2018. Available in April 2020. 
-:7: IPCC (Intergovernmental Panel on Climate Change) (2006): 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use. Eds.: Eggleston S., Buendia L., Miwa K., Ngara T., Tanabe K. (Eds). IEA/OECD, IPCC National Greenhouse Gas Inventories Programme, Technical Support Unit, Hayama, Kanagawa, Japan. <http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html> [zitiert am 03.09.2015]  
-:8: IPCC (Intergovernmental Panel on Climate Change) (2014b): 2013 Supplement to the IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G.(eds). Published: IPCC, Switzerland <http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html> [zitiert am 03.09.2015]  
-[[/bibliography]]