5.C.2 - Open Burning of Waste

Category Code	e Method			AD						EF					
5.C.2		(CS					ຸ					D, (CS	
	NO _x	NMVOC	SO	2 NH3	PM _{2.5}	PM ₁₀	TSP	BC	со	Pb	Cd	Hg	Diox		НСВ
Key Category:	-/-	-/-	-/-	-	-/T	-/-	-/-	-/-	-/-	-/-	-/-	-	-/-	-/-	-
T = key source b	y Tre	end $L = k$	ey s	sourc	e by L	evel	-						-		
Methods															
	D				Defau	Default									
	RA	1				Reference Approach									
	T1				Tier 1		ple N	1eth	odo	logy	/*				
	Т2				Tier 2										
	T3				Fier 3 / Detailed Methodology *										
	C				CORINAIR										
	CS					Country Specific									
	М				Mode										
* as described in	the	EMEP/CC	RIN	AIR E	missic	n Inv	entor	y Gı	uide	boo	k - 2	200	7, in	the g	roup
AD - Data Sour			ty I	Data											
NS National Stat															
RS Regional Sta															
IS International															
PS Plant Specific															
AS Associations,	, bus	iness org	anis	ation	s										
Q specific ques	tion	naires, su	irve	ys											
EF - Emission F	act	ors													
Default (EME	P Gu	idebook)													
C Confidential															
CS Country Spec															
PS Plant Specific	: dat	a													

Within NFR sub-category 5.C.2 - Open Burning of Waste, the German emissions inventory provides emissions from registered bonfires and other wooden materials burnt outdoors. Emissions from bonfires are key source for PM2.5 and PM10, but in principle of minor priority due to discontinuous appearance.

Please see chapter regarding farming/plantation waste: https://thg.thuenen.de/iir-de/sector/agriculture/field_burning/start - this is banned by law in Germany. So there is no gap of reporting.

Emissions from open burning of wood and green waste for traditional purposes, so-called bonfires such as Easter fires, are reported model-based. In addition to biogenic carbon dioxide, emissions of NOx, SO2, CO, NMVOC, particulate matter (PM2.5, PM10 and TSP), Polycyclic Aromatic Hydrocarbons (PAHs) and Heavy Metals are covered so far.

Method

For developing of a estimation frame a survey regarding the number of such bonfires was carried out by an expert work ¹⁾. As the result, questionnaires from municipalities and statistical projections for Germany for the year 2016 were checked. The project has shown a declining trend since 1990. On the basis of expert judgement, a further reduction of emissions in the future is expected.

As discussed on Review 2020 regarding all relevant sources: A comparison shows that the volume of bonfires is significantly higher than the volume of campfires. In terms of number, however, the two types of fires are similar. Due to the large fluctuations of the minimum/maximum values, the median was proposed in study. In our view the estimation of bonfires emissions is conservative and completly.

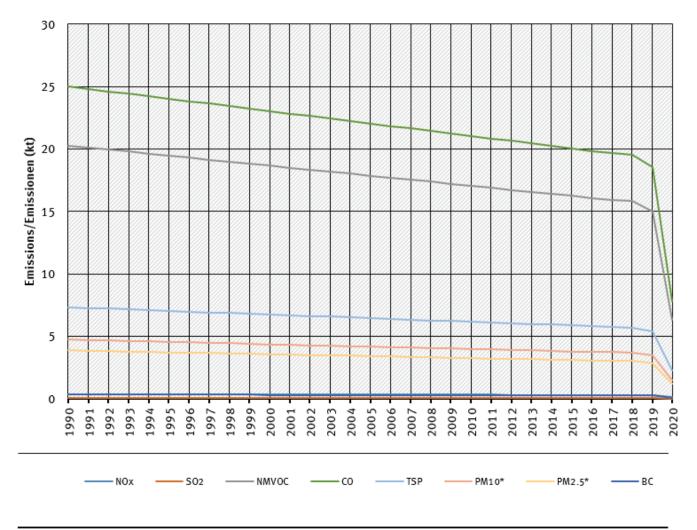
Activity data

Activity data for this category are based on data from a step by step calculation: After the evaluation of the questionaires an extrapolation of the volume and the number of bonfires was made for Germany. For the years since 2019, it became visible that, in addition to the model-based continuous decrease in activities, special aspects must be taken into account: Because of the restrictions on public activities during the pandemic, modeling of less traditional events was searched for. Two types of fires were already classified in the expert project: camp fires in the more private sector and, most importantly, Easter Fires in the more public sector. The calculations are now considered separately and the camp fires are modeled with a continued steady decline. The mainly Easter fires follow an approach about general percentage decreases and additionally in 2019 five percentage points decrease corresponding to various cancels due to forest fire risk. In 2020, an additional 70 percent decrease was modeled due to cancellations for pandemic response (no complete cancellation in Germany because there were exceptions and follow-up events). The following values are the result of evaluation:

Type of fire (quantity of wooden wastes)	Unit	1990	1995	2000	2005	2010	2015	2016	2017	2018	2019	2020
All bonfires in sum	t	431,394	414,276	397,157	380,038	362,919	345,800	342,376	339,466	336,556	319,531	135,170

Emission factors

As discussed on Review 2020 regarding EF used and referenced: We use different EF from different references instead the EF of Table 3-1 Tier 1 emission factors for source category 5.C.2 Small-scale waste burning, because the Tier 1 EF seem not suitable for the burning of wooden wastes. We consider both fresh wood (garden and park waste) and dry wood (without coatings etc.). We have tried to find relevant parallels, especially because of the burning of fresh wood with regard to forest fires. But regarding the EF from GB 2019 we will evaluate the use as shown in the following table:


pollutant	Figure	unit	Current reference	Planned improvement
со		-	GB 2016 small combustion Table 3-6: Tier 1 emission factors for NFR source category 1.A.4.b, using biomass	to use EF from GB 2019 5.C.2, table 3-2: 48.8 kg/ t
NO×	0.9	kg/ t	Research results from literature: wood burning as it was documented in Ireland's IIR	to use EF from GB 2019 5.C.2, table 3-2: 1.38 kg/ t
SO2	0.2		Research results from literature: wood burning as it was documented in Ireland's IIR	to use EF from GB 2019 5.C.2, table 3-2: 0.03 kg/ t
NMVOC	47.0	kg/ t	not correct used, error in data handling	to use EF from GB 2019 5.C.2, table 3-2: 1.47 kg/ t
TSP	17.0	kg/ t	GB 2016 Forest fires, table 3-1, according 'wood burned'	to use EF from GB 2019 5.C.2, table 3-2: 4.31
PM10	11.0	kg/ t	GB 2016 Forest fires, table 3-1, according 'wood burned'	to use EF from GB 2019 5.C.2, table 3-2: 4.13 kg/ t
PM2.5	9.0	kg/ t	GB 2016 Forest fires, table 3-1, according 'wood burned'	to use EF from GB 2019 5.C.2, table 3-2: 3.76 kg/ t
вс	0.81	kg/ t	GB 2016 Forest fires, table 3-1, according 'wood burned'	to use EF from GB 2019 5.C.2, table 3-2: 28% of PM2.5
PCDD/F	10.0	μg/ t	GB 2019 5.C.2, table 3-1	No further
PAH	3.39	g/t	sum of single compounts	No further
BaP	1.3	g/t	IIR Ireland ²⁾	No further (GB with dry matter problem)
BbF	1.5	g/t	IIR Ireland ³⁾	No further (GB with dry matter problem)
BkF	0.5	g/t	IIR Ireland 4)	No further (GB with dry matter problem)
IxP	0.09	g/t	IIR Ireland ⁵⁾	No further, Gap in GB
Pb	0.32	g/t	GB 2019 5.C.2, table 3-2	No further
Cd	0.13	g/t	GB 2019 5.C.2, table 3-2	No further

Trends in emissions

All trends in emissions correspond to trends of AD. No rising trends are to identify.

trends of emissions of bonfires

Emissions by pollutant / Emissionen nach Schadstoff

* Base Year for PM = 1995 / Basisjahr für

Feinstäube (PM) ist 1995

Source: German Emission Inventory (03.12.2021)

Emission trends of bonfires

Recalculations

Due to evaluation of activity data recalculations have been carried out compared to last year's submission. Mainly the values of 2019 were changed, all other years only minor.

For **pollutant-specific information on recalculated emission estimates for Base Year and 2019**, please see the recalculation tables following chapter 8.1 - Recalculations.

https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2018-02-19_texte_11-2018_lager-brauchtu msfeuer.pdf; UBA-Texte 11/2018

^{2), 3), 4), 5)} (EF is referenced to a former research project called 'Use of charcoal, tobacco etc.'. This was a literature research, which is only available via UBA library in German. The EF is relating wood burning as it was documented in Ireland's IIR

¹⁾ Wagner & Steinmetzer, 2018: Jörg Wagner, Sonja Steinmetzer, INTECUS GmbH Abfallwirtschaft und umweltintegratives Management: Erhebung der Größen und Zusammensetzung von Brauchtums- und Lagerfeuern durch kommunale Befragungen; URL: