3.I - Agricultural: Other 1/3

3.I - Agricultural: Other

Short description

NFR-Code	Nan	ne o	f Cat	ego	ry				M	leth	od	A	D E	F		Stat	te of repo	tin
3.I	Agriculture other																	
consisting	of /	inc	ludir	g so	urce cat	teg	orie	es										
3.1	Stor	age	of dig	gesta	te from e	ener	gy	crop	s T	2 (N	H ₃ , NO	O _x) Q	, PS C	S (N	H ₃ , NO	×)		
Key Categ	ory	SO2	ΝO×	ΝНз	NMVOC	co	вс	Pb	Hg	Cd	Diox	PAH	НСВ	TSP	PM ₁₀	PM ₂ 5		
3.1		-	-/-	-/-	-	-	-	-	-	-	-	-	-	-	- 1	-	1	

T = key source by Trend L = key source by Level

Methods	
D	Default
T1	Tier 1 / Simple Methodology *
T2	Tier 2*
Т3	Tier 3 / Detailed Methodology *
С	CORINAIR
CS	Country Specific
M	Model
* as described in the EMEP/E	EA Emission Inventory Guidebook - 2019, in the group specific chapters.

AD	- Data Source for Activity Data
NS	National Statistics
RS	Regional Statistics
IS	International Statistics
PS	Plant Specific data
As	Associations, business organisations
Q	specific Questionnaires (or surveys)
М	Model / Modelled
С	Confidential

EF	- Emission Factors
D	Default (EMEP Guidebook)
С	Confidential
CS	Country Specific
PS	Plant Specific data
М	Model / Modelled

Country specifics

In 2020, NH_3 emissions from category 3.I (agriculture other) derived up to 0.6 % from total agricultural emissions, which is equal to ~ 3.1 kt NH_3 . NO_x emissions from category 3.I contribute 0.16 % (~ 0.17 kt) to the total agricultural emissions. All these emissions originate from the storage of digestate from energy crops (for details on anaerobic digestion of energy crops see Vos et al. 2022, Chapter 10 $^{1)}$. The emissions resulting from the application of energy crop digestates as organic fertilizer are dealt with under 3.D.a.2.c.

Activity Data

Time series of activity data have been provided by KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft / Association for Technology and Structures in Agriculture). From these data the amount of N in energy crops fed into anaerobic digestion was calculated.

Table 1: N amount in energy crops fed into anaerobic digestion

3.I - Agricultural: Other 2/3

				Na	amoui	nt in e	nergy	crop	s in G	g N				
1990	1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020													2020
0.1	0.7	5.6	47.6	172.0	214.5	234.9	284.1	297.3	308.8	307.1	302.1	297.6	297.8	297.8

Table 2: Distribution of gastight storage and storage in open tank of energy crop digestates

	Di	stribu	ution	of gas	tight	stora	ge an	d non	-gast	ight s	torag	e, in ⁹	%		
	1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020														2020
gastight	0.0	4.7	9.4	15.8	42.2	47.5	59.4	61.9	63.9	64.6	64.8	64.5	64.8	65.5	65.5
non-gastight	non-gastight 100.0 95.3 90.6 84.2 57.8 52.5 40.6 38.1 36.1 35.4 35.2 35.5 35.2 34.5 34.5														34.5

Methodology

The calculation of emissions from storage of digestate from energy crops considers two different types of storage, i.e. gastight storage and open tank. The frequencies of these storage types are also provided by KTBL (see Table 2). There are no emissions of NH₃ and NO from gastight storage of digestate. Hence the total emissions from the storage of digestate are calculated by multiplying the amount of N in the digestate leaving the fermenter with the relative frequency of open tanks and the emission factor for open tank. The amount of N in the digestate leaving the fermenter is identical to the N amount in energy crops fed into anaerobic digestion (see Table 1) because N losses from pre-storage are negligible and there are no N losses from fermenter (see Vos et al. 2022, Chapter 10.2.1.).

Emission factors

As no specific emission factor is known for the storage of digestion residues in open tanks, the NH_3 emission factor for storage of cattle slurry with crust in open tanks was adopted (0.045 kg NH_3 -N per kg TAN). This choice of emission factor is based on the fact that energy crops are, in general, co-fermented with animal manures (i. e. mostly slurry) and that a natural crust forms on the liquid digestates due to the relatively high dry matter content of the energy crops. The TAN content after the digestion process is 0.56 kg TAN per kg N. The NO emission factor for storage of digestion residues in open tanks was set to 0.0005 kg NO-N per kg N. Table 3 shows the resulting implied emission factors for NH_3 -N and NO-N. NO_x emissions are related to NO-N emissions by the ratio of 46/14. This relationship also holds for NO-N and NO_x emission factors.

Table 3: IEF for NH₃ -N and NO-N emissions from storage of digested energy crops

1990	1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
IEF in k	g NH ₃ -N	per kg l	N in dige	ested en	ergy cro	ps							
0.0252	0.0240	0.0228	0.0212	0.0146	0.0132	0.0102	0.0096	0.0091	0.0089	0.0089	0.0089	0.0089	0.0089
IEF in k	g NO-N	per kg N	l in dige	sted en	ergy cro	ps							
0.00050	0.00048	0.00045	0.00042	0.00029	0.00026	0.00020	0.00019	0.00018	0.00018	0.00018	0.00018	0.00018	0.00018

Trend discussion for Key Sources

NH₃ and NO_x from storage of anaerobically digested energy crops are no key source.

Recalculations

All time series of the emission inventory have completely been recalculated since 1990. Table REC-1 shows the effects of recalculations on NH_3 and NO_x emissions from storage of anaerobically digested energy crops. Differences to last year's submission occur only in 2019 and are due to the update of activity data (see main page of the agricultural sector, Chapter 5 - NFR 3 - Agriculture (OVERVIEW), **recalculation reason No 16**). For further details on recalculations see Vos et al. (2022), Chapter 3.5.2.

Table REC-1: Comparison of NH₃ and NO_x emissions of the submissions (SUB) 2021 and 2022

NH	, / NO	, emiss	ions in	Gg											
	SUB	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
NH:	2021	0.0015	0.0190	0.1563	1.2267	3.0426	3.4504	2.9206	3.3062	3.2814	3.3428	3.3004	3.2741	3.2013	3.2013

3.I - Agricultural: Other

NH ₃	2020	0.0015	0.0190	0.1563	1.2267	3.0426	3.4504	2.9206	3.3062	3.2814	3.3428	3.3004	3.2741	3.2895	
NO _x	2021	0.0001	0.0010	0.0084	0.0659	0.1634	0.1852	0.1568	0.1775	0.1762	0.1795	0.1772	0.1758	0.1719	0.1719
NO _x	2020	0.0001	0.0010	0.0084	0.0659	0.1634	0.1852	0.1568	0.1775	0.1762	0.1795	0.1772	0.1758	0.1766	

Uncertainty

Details will be described in chapter 1.7.

1)

Vos et al. (2022): Vos C., Rösemann C., Haenel H-D., Dämmgen U., Döring U., Wulf S., Eurich-Menden B., Freibauer A., Döhler H., Schreiner C., Osterburg B. & Fuß, R. (2022): Calculations of gaseous and particulate emissions from German Agriculture 1990 –2020. Report on methods and data (RMD), Submission 2022. (in preparation). https://www.thuenen.de/de/ak/arbeitsbereiche/emissionsinventare/