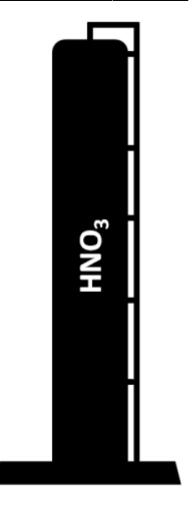
2.B.2 - Nitric Acid Production


Short description

Catego	ry Code	Method					AD					EF					
2.B.2		T2					PS					D					
Key Ca	tegory	SO2	NO _×	NH₃	N	муос	со	BC	Pb	Hg	Cd	Diox	PAH	HCB	TSP	PM10	PM2.5
2.B.2		-	L/-	-	Γ	-	-	-	-	-	-	-	-	-	-	-	-
T = key	source b	y Tre	end L	. = k	ey	source	e by	Lev	el								
Method	ls																
		D					faul										
		Т1					Fier 1 / Simple Methodology *										
		Т2					r 2*										
		Т3							tail	ed N	1eth	nodolo	ogy *				
		С				CO	RIN	AIR									
		CS						y Sp	beci	fic							
		Μ					del										
	cribed in						n In	ven	tory	/ Gu	ide	book	- 2019	9, in t	he g	roup s	pecific
<u> </u>	ita Sour			ctivi	ty	Data											
	onal Stat		-														
	ional Sta																
	rnational			5													
	t Specifi																
	ciations			-			-										
	ific Que		naire	s (or	รเ	urveys)											
	el / Mode	elled					-										
	fidential																
	ission F																
	ult (EME	P Gu	ideb	ook)													
	idential																
	ntry Spec																
	t Specific		а														
M Mod	el / Mode	elled															

During the production of nitric acid (HNO_3), nitrogen oxide is produced unintentionally in a secondary reaction during the catalytic oxidation of ammonia (NH_3). HNO_3 production occurs in two process stages:

- Oxidation of $\rm NH_3$ to NO and
- Conversion of NO to NO₂ and absorption in H₂O.

Details of the process are outlined below:

Catalytic oxidation of ammonia

A mixture of ammonia and air at a ratio of 1:9 is oxidised, in the presence of a platinum catalyst alloyed with rhodium and/or palladium, at a temperature of between 800 and 950 °C. The reaction according to the Oswald process is as follows:

 $4 \text{ NH}_3 + 5 \text{ O}_2 \rightarrow 4 \text{ NO} + 6 \text{ H}_2\text{O}$

Simultaneously, nitrogen, nitrous oxide and water are formed by the following undesired secondary reactions:

4 NH₃ + 3 O₂ -> 2 N₂ + 6 H₂O

 $4 \text{ NH}_3 + 4 \text{ O}_2 \rightarrow 2 \text{ N}_2\text{O} + 6 \text{ H}_2\text{O}$

All three oxidation reactions are exothermic. Heat may be recovered to produce steam for the process and for export to other plants and/or to preheat the residual gas. The reaction water is condensed in a cooling condenser, during the cooling of the reaction gases, and is then conveyed into the absorption column.

Method

In Germany, there are currently seven nitric acid plants.

Activity data

As this source category is a key category for N_2O , plant specific activity data is collected here according to the IPCC guidelines.

This data is made available basically via a co-operation agreement with the nitric acid producers and the IVA (Industrieverband Agrar). As the data provided by the producers has to be treated as confidential, it is anonymised by the IVA before submitting it to the UBA. However, one producer is delivering its data directly to the UBA. After checking this

specific data, it is merged with that provided by the IVA.

According to the IVA, catalytic reduction is used as an abatement method in some of the plants.

Emission factors

Different T2 default NO_x emission factors based on different technology types and abatement systems are used from the EEA Emission Inventory Guidebook 2019 (EF for medium and high pressure processes and for catalytic reduction of low, medium and high pressure process¹). The applied emissions factors are listed in Table 1.

Table 1: Tier 2 emission factor of NOx for source category 2.B.2 Nitric acid production

Emission factor (kg/t)	Process
7.5	medium pressure process
3	high pressure process
0.4	low, medium and high pressure process, catalytic reduction

Recalculations

With emission factors revised for each plant, recalculations of NOx have been carried out compared to last year's submission. So far a T1 method with a T1 Default EF was used. With the sabmissionsubmission 2022 a T2 method is applied with T2 EFs. The total emissions from 1990 to 2019 for the latest two submissions and their difference are listed in **Table 2**.

Table 2: NOx emissions from nitric acid production

	Submission 2022	Submission 2021	Difference
Year	NOx emission (in kt)	NO _× emission (in kt)	NOx emission (in kt)
1990	11.30	16.98	5.68
1991	10.40	15.60	5.20
1992	10.08	14.76	4.69
1993	9.60	14.76	5.17
1994	9.45	14.59	5.14
1995	10.33	16.25	5.91
1996	10.65	16.60	5.95
1997	10.50	16.33	5.83
1998	10.55	16.54	5.99
1999	10.94	17.40	6.46
2000	11.93	19.23	7.30
2001	11.24	18.07	6.83
2002	14.05	21.12	7.07
2003	14.67	22.49	7.82
2004	17.59	25.99	8.40
2005	17.92	26.34	8.43
2006	18.26	26.95	8.69
2007	14.28	28.79	14.50
2008	12.91	26.30	13.39
2009	2.78	22.58	19.81
2010	1.01	25.25	24.24
2011	0.99	24.85	23.85
2012	1.00	24.90	23.90
2013	1.03	25.72	24.69
2014	1.04	26.01	24.97
2015	1.01	25.22	24.21
2016	1.02	25.41	24.39
2017	1.08	27.11	26.03
2018	1.07	26.69	25.62

	Submission 2022	Submission 2021	Difference
Year	NOx emission (in kt)	NOx emission (in kt)	NOx emission (in kt)
2019	1.07	26.69	25.62

For pollutant-specific information on recalculated emission estimates for Base Year and 2018, please see the pollutant specific recalculation tables following chapter 8.1 - Recalculations.

Planned improvements

No category-specific improvements are planned.

¹⁾ EEA, Oct 2019: : EMEP/EEA air pollutant emission inventory guidebook 2019, Part B: sectoral guidance chapters, 2.B Chemical industry: pp.21-23, Table 3.11, Table 3.12 and Table 3.14.