2.A.3 - Glass Production

Short description

Cate	gory Code			Meti	nod				A)				EF		
2.A.3				T2	2				AS	5				CS	;	
Key	Category	SO2	NO _×	NH₃	NMVO	CO	BC	Pb	Hg	Cd	Diox	PAH	НСВ	TSP	PM10	PM2 5
2.A.3		L/-	-/-	-/-	-/-	-	-	-/-	-	-/-	-	-	-	-/-	-/-	-/-
T = k	key source b	y Tre	end L	. = k	ey sourc	e by	Lev	el					-			
Met	hods															
		D			D	efaul	t									
		т1			Ti	er 1,	/ Sin	nple	e Me	tho	dolog	IY *				
		Т2			Ti	er 2*										
		Т3			Ti	er 3 ,	/ De	tail	ed N	1etł	nodolo	ogy *				
		С			C	DRIN	AIR									
		CS				ountr	y Sp	beci	fic							
		М				odel										
	described ir					on In	ven	tory	/ Gu	ide	book ·	- 2019	9, in t	he gi	roup s	pecific
	Data Sour			ctivi	ty Data											
	lational Stat		-													
	Regional Sta															
	nternational			5												
	Plant Specifi															
	ssociations			-		_										
	pecific Que			s (or	surveys)										
	1odel / Mode	elled														
	Confidential															
<u> </u>	Emission I															
	efault (EME	P Gu	ideb	ook)												
	Confidential															
	CS Country Specific															
	lant Specifi		а													
M ∕	lodel / Mode	elled														

Germany's glass industry produces a wide range of different glass types that differ in their chemical composition. Germany's glass sector comprises the following sub-sectors: container glass, flat glass, domestic glass, special glass and mineral fibres (glass and stone wool). The largest production quantities are found in the sectors of container glass and flat glass. Further processing and treatment of glass and glass objects are not considered.

Methodology

The emissions are calculated via a higher Tier method resembling a Tier 2 method, as the activity rates are tied to specific emission factors for different glass types.

Activity data

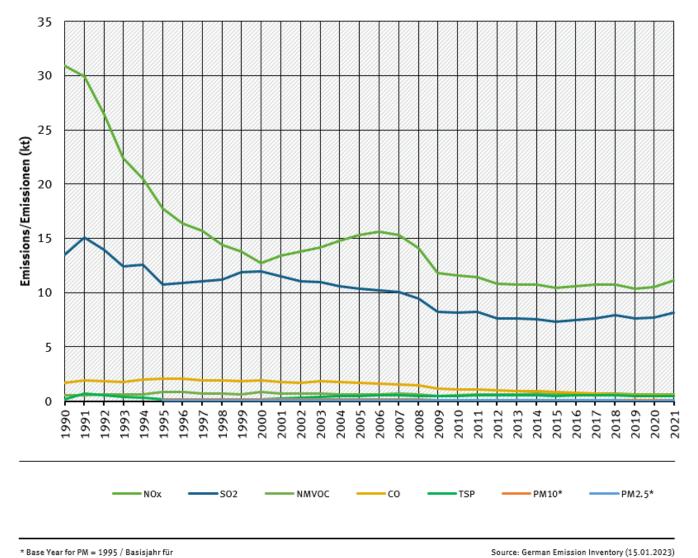
The production figures are taken from the regularly appearing annual reports of the Federal Association of the German Glass Industry (Bundesverband Glasindustrie; BV Glas). "Production" refers to the amount of glass produced, which is considered to be equivalent to the amount of glass melted down.

Emission factors

The procedure used to determine emission factors for the various glass types involved and the pertinent emissions is described in detail in reports of two research projects (2008: Report-No. 001264¹⁾, 2021: Texte 45/2021²⁾). The emission factors were calculated for the various industry sectors. The factors vary over time in keeping with industry monitoring, not only as steady trends, but falling in most cases. The most recently EF are for different glass types the following:

Table 1: Overview of most recently applied emission factors

Pollutant	Unit	Container glass	flat glass	domestic glass	special glass	glass wool	stone wool
NOx	kg/ t	10.766	17.708	28.602	35.558	0.5883	1.877
SO2	kg/ t	0.759	15.677	0.0599	0.1157	0.1847	2.229
NMVOC	kg/ t	NA	NA	NA	NA	0.6	0.657
CO	kg/ t	0.0732	0.0241	0.0661	0.1195	0.06	0.185
NH3	kg/ t	0.0026	0.0191	NA	0.0295	1.10	1.163
TSP	kg/ t	0.00863	0.01681	0.015	0.00765	0.01096	0.643
PM10	kg/ t	0.00742	0.01429	0.0129	0.0065	0.00932	0.0234
PM2.5	kg/ t	0.00483	0.00773	0.0069	0.00352	0.00504	0.0128
As	g/t	0.0279	0.0104	0.0023	0.1143	0.0354	NE
Pb	g/t	0.1237	0.0104	0.0076	0.1158	0.1571	NE
Cd	g/t	0.0032	0.0005	0	0.0028	0.0041	NE
Cr	g/t	0.0186	0.0029	0.0007	0.0148	0.0236	NE
Cu	g/t	0.0035	0.02	0.0002	0.0085	0.0056	NE
Ni	g/t	0.0048	0.0061	0.0003	0.0142	0.0061	NE
Se	g/t	0.2794	0.0427	0.1273	0.0454	0.01	NE


For each glass type the estimated EF are explained in 'Texte 45/2021' with an expert votum and uncertainty estimation.

Trends in emissions

Trends in emissions correspond to trends of emission factors and of production development. The resulting trends are not constant, as a result of different EF for various glass types. So emissions of SO₂ couldn't decrease due to increased production Level of a relevant product.

trends of emissions of glass industry

Emissions by pollutant / Emissionen nach Schadstoff

* Base Year for PM = 1995 / Basisjahr für Feinstäube (PM) ist 1995

Emission trends in NFR 2.A.3

Recalculations

Recalculations were necessary due to updated emission factors for all years.

For pollutant-specific information on recalculated emission estimates for Base Year and 2018, please see the pollutant specific recalculation tables following chapter 8.1 - Recalculations.

Planned improvements

No further improvements are planned.

¹⁾ UFoPlan FKZ 206 42 300/02: Teilvorhaben 02: "Providing up-to-date emission data for the glass and mineral fiber industry"

downloading via search "UBA-FB 001264" in (https://doku.uba.de \Rightarrow OPAC \Rightarrow use parameter 'Signatur' ²⁾ ReFoPlan FKZ - 3719 52 1010: "Revision of emission factors for air pollutants in the cement clinker production and glass manufacturing sectors" downloading via

https://www.umweltbundesamt.de/sites/default/files/medien/5750/publikationen/2021-03-18_texte_45-2021_luftschadstoff_gl asindustrie.pdf