2.A.2 - Lime Production

Short description

Category Code		Ме	thoo	I			A	D					E	F	
2.A.2		-	Г1				A	١S					C	S	
	NO _x	NMVOC	SO ₂	NH ₃	PM _{2.5}	PM ₁₀	TSP	BC	СО	Pb	Cd	Hg	Diox	PAH	ІНСВ
Key Category:	-/-	-/-	-/-	-	-/-	-/-	-/-	-	-/-	-	-	-/-	-	-	-
T = key source b	by Tre	end $L = k$	ey s	ource	e by Le	evel									
Methods															
	D			_	fault										
	Т1				er 1 / S	Simple	e Met	hod	olog	ly *					
	Т2				er 2*										
	Т3			_	er 3 / D		ed Me	etho	dolo	ogy	*				
	С				RINAI										
	CS			_	untry	Speci	fic								
	M				del		<u> </u>								
* as described in					n Inve	entory	/ Guid	lebo	ook ·	- 20	19,	in t	he gr	oup s	pecifi
AD - Data Sou			ty D	ata	_										
NS National Sta					_										
RS Regional Sta					_										
IS Internationa					_										
PS Plant Specifi As Associations			anic	tion											
Q specific Que					_										
M Model / Model			Sul	ieys,											
C Confidential	ciicu				-										
EF - Emission	Facto	ors													
D Default (EME															
C Confidential															
CS Country Spe	cific														
PS Plant Specifi		а													
M Model / Mode															

The statements made below regarding source category 2.A.2 refer solely to the amounts of burnt lime and dolomite lime produced in German lime works. Other lime-producing processes are included in NFR 2.C.1 and 2.H.2.

Because of the wide range of applications covered by the sector's products, lime production is normally more isolated from economic fluctuations than is production of other mineral products such as cement. Production has fluctuated relatively little since the end of the 1990s. Dolomite-lime production, of which significantly smaller amounts are produced, basically exhibits similar fluctuations.

Methodology

The pertinent emissions level is obtained by multiplying the amount of product in question (quick lime or dolomite lime) and the relevant emission factor.

Activity data

The German Lime Association (BVK) collects the production data for the entire time series on a plant-specific basis, and makes it available for reporting purposes. Production amounts are determined via several different concurrent procedures; their quality is thus adequately assured (Tier 2). Most companies are also required to report lime-production data within the

framework of CO_2 -emissions trading. The EU monitoring guidelines for emissions trading specify a maximum accuracy of 2.5%. It is additionally assumed that 2% of the burnt lime is separated as dust in all years of the reporting period from 1990 onwards via appropriate exhaust gas purification systems and is not returned to the production process. This is taken into account by a potential 2% increase in activity rates.

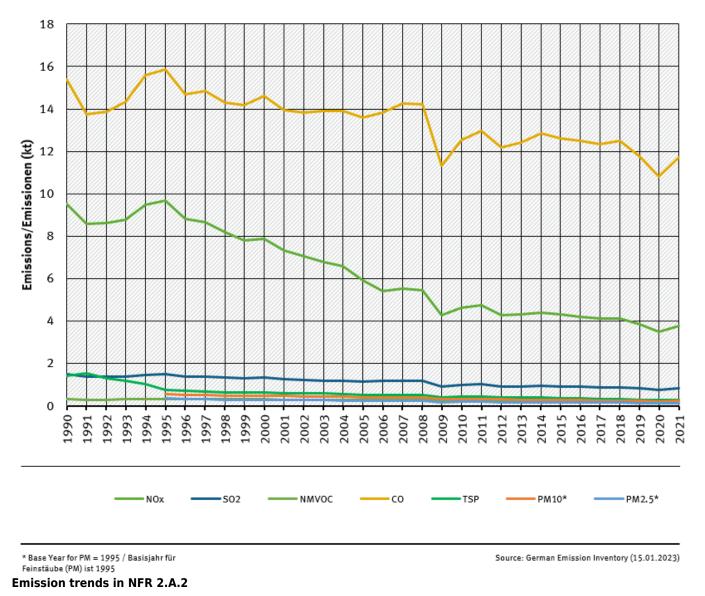
Emission factors

Due to recommendation during NEC-Review 2021 the calculation of CO emissions from lime production is allocated to process emissions based on default-EF. The other EF are country-specific values from different research projects.

Table 1: Emission factors for quick-lime production

pollutant	Name of Category	EF	unit	Trend
NO _x	quicklime	0.59	kg/t	falling
SO ₂	quicklime	0.12	kg/t	falling
NMVOC	quicklime	0.041	kg/t	constant
со	quicklime	1.940	kg/t	default 1)
TSP	quicklime	0.050	kg/t	falling
PM ₁₀	quicklime	0.038	kg/t	falling
PM _{2.5}	quicklime	0.023	kg/t	falling
Hg	quicklime	2.62	mg/t	falling

Table 2: Emission factors for dolomite production


pollutant	Name of Category	EF	unit	Trend
NO _x	dolomite	1.73	kg/t	falling
SO ₂	dolomite	0.58	kg/t	falling
NMVOC	dolomite	0.041	kg/t	constant
со	dolomite	1.940	kg/t	default ²⁾
TSP	dolomite	0.034	kg/t	falling
PM ₁₀	dolomite	0.026	kg/t	falling
PM _{2.5}	dolomite	0.015	kg/t	falling
Hg	quicklime	2.63	mg/t	falling

Trends in emissions

All trends in emissions correspond to trends of emission factors in table above. No rising trends are identified.

trends of emissions of lime industry

Emissions by pollutant / Emissionen nach Schadstoff

Recalculations

With **activity data** and all already used **emission factors** remaining unrevised, no recalculations have been carried out compared to last year's submission for this pollutants.

However, due to a recommendation during NEC-Review 2021, the calculation of CO emissions from lime production is allocated to process emissions and estimated and reported here for the first time. Therefore, the emission trend shows the recalculation in total.

For **pollutant-specific information on recalculated emission estimates for Base Year and 2020**, please see the pollutant specific recalculation tables following chapter 8.1 - Recalculations.

Planned improvements

At the moment, no category-specific improvements are planned.

1) 2)

EMEP GB 2019: Table 3-23 Tier 2 emission factors for source category 1.A.2.f.i, Lime production