5.C.2 - Open Burning of Waste | Category Code | Method | | | | | | Αľ |) | | EF | | | | | | |----------------------|-----------------|-----|-----|-------|-----|-----|-----|----|-----|------|-------|-----|-----|------------------|-------------------| | 5.C.2 | | | CS | 5 | | | | Q | | | D, CS | | | | | | Key Category | SO ₂ | NOx | ΝНз | NMVOC | СО | ВС | Pb | Hg | Cd | Diox | PAH | нсв | TSP | PM ₁₀ | PM ₂ 5 | | 5.C.2 | -/- | -/- | - | -/- | -/- | -/- | -/- | - | -/- | -/- | -/- | - | -/- | L/- | L/- | T = key source by Trend L = key source by Level | _ | |---| * as described in the EMEP/EEA Emission Inventory Guidebook - 2019, in the group specific chapters. | AD | - Data Source for Activity Data | |----|--------------------------------------| | NS | National Statistics | | RS | Regional Statistics | | IS | International Statistics | | PS | Plant Specific data | | As | Associations, business organisations | | Q | specific Questionnaires (or surveys) | | М | Model / Modelled | | С | Confidential | | | | | EF | - Emission Factors | |----|--------------------------| | D | Default (EMEP Guidebook) | | С | Confidential | | CS | Country Specific | | PS | Plant Specific data | | М | Model / Modelled | Within NFR sub-category 5.C.2 - Open Burning of Waste, the German emissions inventory provides emissions from registered bonfires and other wooden materials burnt outdoors. Emissions from bonfires are key source for PM2.5 and PM10, but in principle of minor priority due to discontinuous appearance. Emissions from open burning of wood and green waste for traditional purposes, so-called bonfires such as Easter fires, are reported model-based. In addition to biogenic carbon dioxide, emissions of NOx, SO2, CO, NMVOC, particulate matter (PM2.5, PM10 and TSP) and Polycyclic Aromatic Hydrocarbons (PAHs) are covered so far. ### Method For developing of a estimation frame a survey regarding the number of such bonfires was carried out by an expert work ¹⁾. As the result, questionnaires from municipalities and statistical projections for Germany for the year 2016 were checked. The project has shown a declining trend since 1990. On the basis of expert judgement, a further reduction of emissions in the future is expected. ### **Activity data** Activity data for this category are based on data from a step by step calculation: After the evaluation of the questionaires an extrapolation of the volume and the number of bonfires was made for Germany. The median values of clusters of city-sizes were used for the calculation, resulting in the following values ²⁾: | fire | resulting number | resulting quantity in kt of wooden wastes | |----------------------------|------------------|---| | easter fires et. | 54 | 343.3 | | other open burning of wood | 49 | 59.3 | ## **Emission factors** Emission factors used were taken from different sources: | CO 58.0 GB 2016 small combustion Table 3-6: Tier 1 emission factors for NFR source category 1.A.4.b biomass NOx 0.9 Research results for charcoal SO2 0.2 Research results for charcoal NMVOC 47.0 GB 2016 Forest fires, table 3-1, according 'wood burned' TSP 17.0 GB 2016 Forest fires, table 3-1, according 'wood burned' PM10 11.0 GB 2016 Forest fires, table 3-1, according 'wood burned' PM2.5 9.0 GB 2016 Forest fires, table 3-1, according 'wood burned' BC 0.81 GB 2016 Forest fires, table 3-1, according 'wood burned' PCDD/F 10.0 μg/ t GB 2016 Forest fires, table 3-2 PAH 0.00339 sum of single compounts | | |--|-------| | SO2 0.2 Research results for charcoal NMVOC 47.0 GB 2016 Forest fires, table 3-1, according 'wood burned' TSP 17.0 GB 2016 Forest fires, table 3-1, according 'wood burned' PM10 11.0 GB 2016 Forest fires, table 3-1, according 'wood burned' PM2.5 9.0 GB 2016 Forest fires, table 3-1, according 'wood burned' BC 0.81 GB 2016 Forest fires, table 3-1, according 'wood burned' PCDD/F 10.0 μg/ t GB 2016 Forest fires, table 3-2 PAH 0.00339 sum of single compounts | using | | MMVOC 47.0 GB 2016 Forest fires, table 3-1, according 'wood burned' TSP 17.0 GB 2016 Forest fires, table 3-1, according 'wood burned' PM10 11.0 GB 2016 Forest fires, table 3-1, according 'wood burned' PM2.5 9.0 GB 2016 Forest fires, table 3-1, according 'wood burned' BC 0.81 GB 2016 Forest fires, table 3-1, according 'wood burned' PCDD/F 10.0 μg/ t GB 2016 Forest fires, table 3-2 PAH 0.00339 sum of single compounts | | | TSP 17.0 GB 2016 Forest fires, table 3-1, according 'wood burned' PM10 11.0 GB 2016 Forest fires, table 3-1, according 'wood burned' PM2.5 9.0 GB 2016 Forest fires, table 3-1, according 'wood burned' BC 0.81 GB 2016 Forest fires, table 3-1, according 'wood burned' PCDD/F 10.0 μg/ t GB 2016 Forest fires, table 3-2 PAH 0.00339 sum of single compounts | | | PM10 11.0 GB 2016 Forest fires, table 3-1, according 'wood burned' PM2.5 9.0 GB 2016 Forest fires, table 3-1, according 'wood burned' BC 0.81 GB 2016 Forest fires, table 3-1, according 'wood burned' PCDD/F 10.0 μg/ t GB 2016 Forest fires, table 3-2 PAH 0.00339 sum of single compounts | | | PM2.5 9.0 GB 2016 Forest fires, table 3-1, according 'wood burned' BC 0.81 GB 2016 Forest fires, table 3-1, according 'wood burned' PCDD/F 10.0 μg/ t GB 2016 Forest fires, table 3-2 PAH 0.00339 sum of single compounts | | | BC 0.81 GB 2016 Forest fires, table 3-1, according 'wood burned' PCDD/F 10.0 μg/ t GB 2016 Forest fires, table 3-2 PAH 0.00339 sum of single compounts | | | PCDD/F 10.0 μg/ t GB 2016 Forest fires, table 3-2 PAH 0.00339 sum of single compounts | | | PAH 0.00339 sum of single compounts | | | | | | Da Da a a constant de la | | | BaP 0.0013 Research results for charcoal | | | BbF 0.0015 Research results for charcoal | | | BkF 0.0005 Research results for charcoal | | | IxP 0.00009 Research results for charcoal | | | Pb 0.32 g/ t GB 2016 Forest fires, table 3-2 | | | Cd 0.13 g/t GB 2016 Forest fires, table 3-2 | | # **Trends in emissions** All trends in emissions correspond to trends of AD. No rising trends are to identify. In 2019, there were many bans on open fires due to increased forest fire danger. ### trends of emissions of Bonfires ### Emissions by pollutant / Emissionen nach Schadstoff ^{*} Base Year for PM = 1995 / Basisjahr für Feinstäube (PM) ist 1995 Source: German Emission Inventory (20.01.2023) #### **Emission trends of bonfires** ## Recalculations With **activity data** and **emission factors** remaining unrevised, no recalculations have been carried out compared to last year's submission. For pollutant-specific information on recalculated emission estimates for Base Year and 2018, please see the pollutant specific recalculation tables following chapter 8.1 - Recalculations. 1) 2) Wagner & Steinmetzer, 2018: Jörg Wagner, Sonja Steinmetzer, INTECUS GmbH Abfallwirtschaft und umweltintegratives Management: Erhebung der Größen und Zusammensetzung von Brauchtums- und Lagerfeuern durch kommunale Befragungen; URL: $https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2018-02-19_texte_11-2018_lager-brauchtumsfeuer.pdf; UBA-Texte_11/2018$