====== 1.A.3.a ii (i) - Domestic Civil Aviation: LTO ====== ===== Short description ===== In NFR category //1.A.3.a ii (i) - Domestic Civil Aviation: LTO// emissions from domestic flights between German airports occuring during LTO stage (Landing/Take-off: 0-3,000 feet) are reported. ^ Category Code ^ Method ^ AD ^ EF ^ | 1.A.3.a ii (i) | T1, T2, T3 | NS, M | CS, D, M | | {{page>general:Misc:LegendEIT:start}} |||| ---- ^ NOx ^ NMVOC ^ SO2 ^ NH3 ^ PM2.5 ^ PM10 ^ TSP ^ BC ^ CO ^ Pb ^ Cd ^ Hg ^ As ^ Cr ^ Cu ^ Ni ^ Se ^ Zn ^ PCDD/F ^ B(a)P ^ B(b)F ^ B(k)F ^ I(x)P ^ PAH1-4 | HCB | PCBs | | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | NE | -/- | -/- | -/- | -/- | -/- | NA | NA | | {{page>general:Misc:LegendKCA:start}} |||||||||||||||||||||||||| In the following, information on sub-category specific AD, (implied) emission factors and emission estimates are provided. ===== Methodology ===== ==== Actitvity Data ==== Specific jet kerosene consumption during LTO-stage is calculated within TREMOD AV as described in the superordinate chapter. __Table 1: Percentual annual fuel consumption during LTO-stage of domestic flights__ | ^ 1990 ^ 1995 ^ 2000 ^ 2005 ^ 2010 ^ 2015 ^ 2016 ^ 2017 ^ 2018 ^ 2019 ^ 2020 ^ 2021 ^ 2022 ^ ^ Jet Kerosene | 30.0 | 29.3 | 27.8 | 27.5 | 27.5 | 27.6 | 28.0 | 28.1 | 28.3 | 28.1 | 27.5 | 32.9 | 31.8 | ^ Aviation Gasoline | 12.6 | 12.6 | 12.6 | 13.0 | 12.8 | 12.6 | 12.6 | 12.3 | 12.8 | 12.8 | 12.7 | 21.7 | 21.9 | source: Knörr et al. (2023c) [(KNOERR2023c)] &: Gores (2023) [(GORES2023)] As explained above, the use of aviation gasoline is - due to a lack of further information - assumed to entirely take place within the LTO-range. __Table 2: annual LTO fuel consumption for domestic flights, in terajoule__ | ^ 1990 ^ 1995 ^ 2000 ^ 2005 ^ 2010 ^ 2015 ^ 2016 ^ 2017 ^ 2018 ^ 2019 ^ 2020 ^ 2021 ^ 2022 ^ ^ Jet Kerosene | 8,864 | 8,782 | 9,100 | 8,331 | 8,318 | 7,612 | 7,773 | 7,569 | 7,584 | 7,784 | 3,402 | 3,140 | 4,428 | ^ Aviation Gasoline | 264 | 123 | 121 | 78.2 | 62.6 | 62.0 | 51.3 | 49.7 | 49.4 | 40.5 | 26.6 | 32.0 | 35.6 | | **∑ 1.A.3.a ii (i)** ^ 9,128 ^ 8,906 ^ 9,221 ^ 8,409 ^ 8,380 ^ 7,674 ^ 7,825 ^ 7,619 ^ 7,634 ^ 7,824 ^ 3,428 ^ 3,172 ^ 4,463 ^ source: Knörr et al. (2023c) &: Gores (2023) {{ :sector:energy:fuel_combustion:transport:civil_aviation:1a3aii_i_ad.png?701 |Annual enrgy input}} ==== Emission factors ==== All country-specific emission factors used for emission reporting were basically ascertained within UBA project FKZ 360 16 029 (Knörr, W., Schacht, A., & Gores, S. (2012)) [(KNOERR2012)] and have since then been compiled, revised and maintained in TREMOD AV. Furthermore, the **newly implemented EF(BC)** have been estimated via f-BCs as provided in the 2023 EMEP/EEA Guidebook [(EMEPEEA2023)], Chapter 1.A.3.a, 1.A.5.b Aviation, page 49: "Conclusion". For more details, please see the superordinate chapter on civil aviation. __Table 3: Country-specific emission factors, in kg/TJ__ | ^ 1990 ^ 1995 ^ 2000 ^ 2005 ^ 2010 ^ 2015 ^ 2016 ^ 2017 ^ 2018 ^ 2019 ^ 2020 ^ 2021 ^ 2022 ^ | **JET KEROSENE** |||||||||||||| ^ NH3 | 3.98 | 3.95 | 3.95 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | ^ NMVOC | 36.1 | 36.2 | 38.8 | 39.5 | 38.6 | 44.8 | 42.3 | 44.6 | 48.0 | 50.2 | 80.4 | 92.2 | 72.8 | ^ NOx | 290 | 320 | 282 | 273 | 300 | 308 | 318 | 318 | 313 | 310 | 286 | 272 | 288 | ^ SOx | 19.7 | 19.5 | 19.5 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | ^ BC1 | 1.37 | 1.51 | 1.49 | 1.55 | 1.45 | 1.44 | 1.39 | 1.37 | 1.46 | 1.32 | 1.38 | 1.44 | 1.39 | ^ PM2 | 2.86 | 3.15 | 3.10 | 3.23 | 3.02 | 3.01 | 2.89 | 2.85 | 3.04 | 2.75 | 2.87 | 2.99 | 2.90 | ^ CO | 227 | 225 | 293 | 305 | 273 | 280 | 264 | 267 | 280 | 289 | 402 | 442 | 372 | | **AVIATION GASOLINE** |||||||||||||| ^ NH3 | NE ||||||||||||| ^ NMVOC | 673 | 672 | 673 | 687 | 675 | 672 | 663 | 654 | 674 | 669 | 666 | 667 | 663 | ^ NOx | 97.2 | 96.7 | 96.7 | 94.7 | 95.4 | 96.9 | 97.8 | 98.8 | 95.5 | 94.2 | 94.6 | 93.5 | 91.6 | ^ SOx | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | ^ BC1 | 4.26 | 4.32 | 4.31 | 4.52 | 4.5 | 4.3 | 4.2 | 4.1 | 4.5 | 4.7 | 4.7 | 4.9 | 5.2 | ^ PM2 | 28.4 | 28.8 | 28.8 | 30.2 | 29.8 | 28.6 | 27.9 | 27.3 | 30.0 | 31.6 | 31.3 | 32.7 | 34.8 | ^ TSP3 | 43.5 | 44.0 | 43.9 | 45.3 | 45.0 | 43.8 | 43.1 | 42.5 | 45.2 | 46.8 | 46.4 | 47.8 | 50.0 | ^ CO | 16,026 | 16,098 | 16,095 | 15,647 | 16,133 | 16,131 | 16,436 | 16,740 | 16,287 | 16,667 | 16,761 | 16,948 | 17,407 | 1 estimated via a f-BCs (avgas: 0.15, jet kerosene: 0.48) as provided in [(EMEPEEA2019)] \\ 2 EF(PM2.5,) also applied for PM10 and TSP (assumption: > 99% of TSP from diesel oil combustion consists of PM2.5)\\ 3 also including TSP from lead: EF(TSP) = 1.6 x EF(Pb) - see road transport For the country-specific emission factors applied for particulate matter, no clear indication is available, whether or not condensables are included. For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources. ===== Trend discussion for Key Sources ===== NFR sub-category 1.A.3.a ii (i) is no key source for emissions. Basically, emission trends corespond directly with fuel consumption, resulting in a strong but temporary decline during an right after the Covid-19 pandemic. Here, with fuel consumption and emissions showing a steady upwards trend again in 2021 and 2022 for international flights, this "recovery" is much slower for domestic flights. Where, for example, **nitrogen oxides** and **sulphur oxides** emissions are dominated by jet kerosene due to the amount of fuel used,... {{ :sector:energy:fuel_combustion:transport:civil_aviation:1a3aii(i)_sox.png?701 |Annual sulphur oxides emissions }} {{ :sector:energy:fuel_combustion:transport:civil_aviation:1a3aii(i)_nox.png?701 |Annual nitrogen oxides emissions }} ... the majority of **carbon monoxide** stems from the consumption of avgas given the much higher emission factor applied to this fuel, with the emission trend following the trend in avgas consumption: {{ :sector:energy:fuel_combustion:transport:civil_aviation:1a3aii(i)_co.png?701 |Annual carbon monoxide emissions }} **Lead** emissions, on the other hand, with no emission factor available for jet kerosene, are only calculated for avgas. Based on a stable fuel lead-content, the emission trend follows the trend in avgas consumption: {{ :sector:energy:fuel_combustion:transport:civil_aviation:1a3aii(i)_pb.png?701 |Annual lead emissions }} ===== Recalculations ===== **Activity data** In order to keep in line with the regularly updated data sets provided to the EEA by Eurocontrol, the average fuel use per LTO cycle has been updated again within TREMOD Aviation but with much smaller impact as in last year's submission. Furthermore, as explained in the superordinate chapter, avgas consumption for international flights and outside the L/TO range has been estimated for the first time for this submission, with the respective amounts of avgas re-allocated accordingly. Resulting from this revision, the percentual shares of kerosene consumed during LTO within TREMOD AV have been recalculated as shown in Table 4. __Table 4: Revised percentual share of kerosene and avgas consumed during L/TO for domestic flights, in %__ | ^ 1990 ^ 1995 ^ 2000 ^ 2005 ^ 2010 ^ 2015 ^ 2016 ^ 2017 ^ 2018 ^ 2019 ^ 2020 ^ 2021 ^ | **JET KEROSENE** ||||||||||||| ^ current submission | 30.0 | 29.3 | 27.8 | 27.5 | 27.5 | 27.6 | 28.0 | 28.1 | 28.3 | 28.1 | 27.5 | 32.9 | ^ previous submission | 30.2 | 29.4 | 27.9 | 27.6 | 27.6 | 27.7 | 28.1 | 28.3 | 28.4 | 28.1 | 27.6 | 33.7 | ^ absolute change | -0.14 | -0.12 | -0.15 | -0.09 | -0.09 | -0.13 | -0.12 | -0.20 | -0.15 | -0.05 | -0.11 | -0.77 | ^ relative change | -0.48% | -0.40% | -0.54% | -0.33% | -0.32% | -0.48% | -0.42% | -0.71% | -0.54% | -0.17% | -0.39% | -2.28% | | **AVGAS** ||||||||||||| ^ current submission | 12.6 | 12.6 | 12.6 | 13.0 | 12.8 | 12.6 | 12.6 | 12.3 | 12.8 | 12.8 | 12.7 | 21.7 | ^ previous submission | 12.7 | 12.9 | 12.7 | 13.2 | 12.9 | 12.9 | 12.8 | 12.1 | 12.6 | 12.7 | 12.7 | 21.9 | ^ absolute change | -0.15 | -0.27 | -0.10 | -0.17 | -0.16 | -0.23 | -0.16 | 0.21 | 0.18 | 0.08 | 0.03 | -0.23 | ^ relative change | -1.14% | -2.08% | -0.79% | -1.26% | -1.21% | -1.76% | -1.29% | 1.72% | 1.39% | 0.60% | 0.20% | -1.03% | Hence, the amounts of kerosene and avgas allocated to sub-category 1.A.3.a ii (i) had to be revised accordingly: __Table 5: Revised fuel consumption data, in terajoule__ | ^ 1990 ^ 1995 ^ 2000 ^ 2005 ^ 2010 ^ 2015 ^ 2016 ^ 2017 ^ 2018 ^ 2019 ^ 2020 ^ 2021 ^ | **JET KEROSENE** ||||||||||||| ^ current submission | 8,864 | 8,782 | 9,100 | 8,331 | 8,318 | 7,612 | 7,773 | 7,569 | 7,584 | 7,784 | 3,402 | 3,140 | ^ previous submission | 8,762 | 8,716 | 8,941 | 8,262 | 8,275 | 7,598 | 7,749 | 7,564 | 7,658 | 7,996 | 3,607 | 3,319 | ^ absolute change | 101 | 66.4 | 159 | 69.4 | 42.8 | 13.8 | 23.9 | 5.04 | -74.2 | -212 | -205 | -179 | ^ relative change | 1.16% | 0.76% | 1.78% | 0.84% | 0.52% | 0.18% | 0.31% | 0.07% | -0.97% | -2.65% | -5.68% | -5.40% | | **AVGAS** ||||||||||||| ^ current submission | 264 | 123 | 121 | 78.2 | 62.6 | 62.0 | 51.3 | 49.7 | 49.4 | 40.5 | 26.6 | 32.0 | ^ previous submission | 245 | 119 | 113 | 71.7 | 56.9 | 58.0 | 47.1 | 44.2 | 44.7 | 37.4 | 24.8 | 31.9 | ^ absolute change | 18.7 | 4.78 | 8.19 | 6.54 | 5.74 | 4.05 | 4.29 | 5.53 | 4.70 | 3.05 | 1.80 | 0.02 | ^ relative change | 7.61% | 4.03% | 7.24% | 9.12% | 10.09% | 6.98% | 9.11% | 12.52% | 10.51% | 8.15% | 7.28% | 0.07% | In parallel, the majority of **country-specific emission factors** has been revised within TREMOD AV based on information available from the 2023 EMEP/EEA Guidebook [(EMEPEEA2023)] and Eurocontrol's AEM model [(EUROCONTROL2020)] but cannot be displayed here in a proper way. For **pollutant-specific information on recalculated emission estimates for Base Year and 2021**, please see the recalculation tables following [[general:recalculations:start|chapter 8.1 - Recalculations]]. ===== Uncertainties ===== For uncertainties information, please see [[sector:energy:fuel_combustion:transport:civil_aviation:start|main chapter]] on civil aviation. For information on uncertainties, please see the [[sector:energy:fuel_combustion:transport:civil_aviation:start|main chapter]] on civil aviation. ===== Planned improvements ===== For information on planned improvements, please see [[sector:energy:fuel_combustion:transport:civil_aviation:start|main chapter]] on civil aviation. [(AGEB2023>AGEB, 2023: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; https://ag-energiebilanzen.de/daten-und-fakten/bilanzen-1990-bis-2030/?wpv-jahresbereich-bilanz=2021-2030, (Aufruf: 12.12.2023), Köln & Berlin, 2023)] [(BAFA2023>BAFA, 2023: Federal Office of Economics and Export Control (Bundesamt für Wirtschaft und Ausfuhrkontrolle, BAFA): Amtliche Mineralöldaten für die Bundesrepublik Deutschland; https://www.bafa.de/SharedDocs/Downloads/DE/Energie/Mineraloel/moel_amtliche_daten_2022_12.xlsx?__blob=publicationFile&v=4, Eschborn, 2023.)] [(KNOERR2012> Knörr, W., Schacht, A., & Gores, S. (2012): Entwicklung eines eigenständigen Modells zur Berechnung des Flugverkehrs (TREMOD-AV) : Endbericht. Endbericht zum F+E-Vorhaben 360 16 029, URL: https://www.umweltbundesamt.de/publikationen/entwicklung-eines-modells-zur-berechnung; Berlin & Heidelberg, 2012.)] [(KNOERR2023c> Knörr et al. (2023c): Knörr, W., Schacht, A., & Gores, S.: TREMOD Aviation (TREMOD AV) - Revision des Modells zur Berechnung des Flugverkehrs (TREMOD-AV). Heidelberg, Berlin: Ifeu Institut für Energie- und Umweltforschung Heidelberg GmbH & Öko-Institut e.V., Berlin & Heidelberg, 2023.)] [(GORES2023> Gores (2023): Inventartool zum deutschen Flugverkehrsinventar 1990-2022, im Rahmen der Aktualisierung des Moduls TREMOD-AV im Transportemissionsmodell TREMOD, Berlin, 2023.)] [(EMEPEEA2023> EMEP/EEA, 2023: EMEP/EEA air pollutant emission inventory guidebook 2023, https://www.eea.europa.eu/publications/emep-eea-guidebook-2023/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-a-aviation-2023/view; Copenhagen, 2023.)] [(EUROCONTROL2020> Eurocontrol (2020): Advanced emission model (AEM); https://www.eurocontrol.int/model/advanced-emission-model; 2020.)] [(IPCC2006a> IPCC (2006b): Intergovernmental Panel on Climate Change: IPCC emission factor data base; URL: http://www.ipcc-nggip.iges.or.jp/EFDB/main.php)] [(DOEPELHEUER2002> Döpelheuer (2002): Anwendungsorientierte Verfahren zur Bestimmung von CO, HC und Ruß aus Luftfahrttriebwerken, Dissertationsschrift des DLR, Institut für Antriebstechnik, Köln, 2002.)] [(CORINAIR2006> CORINAIR, 2006 - EMEP/CORINAIR Emission Inventory Guidebook - 2006, EEA technical report No. 11/2006; Dezember 2006, Kopenhagen, 2006 URL: http://www.eea.europa.eu/publications/EMEPCORINAIR4 )] [(IPCC1996a> Revised 1996 IPCC Guidelines, Volume 3: Reference Manual, Chapter I: Energy; URL: http://www.ipcc-nggip.iges.or.jp/public/gl/guidelin/ch1ref2.pdf, p. I.40 )] [(IPCC1996b> Revised 1996 IPCC Guidelines, Volume 3: Reference Manual, Chapter I: Energy; http://www.ipcc-nggip.iges.or.jp/public/gl/guidelin/ch1ref3.pdf, p. I.42 )] [(IPCC2000> IPCC, 2000: Intergovernmental Panel on Climate Change, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, IPCC Secretariat, 16th Session, Montreal, 1-8 May 2000, URL: http://www.ipcc-nggip.iges.or.jp/public/gp/english/ )] [(EUROCONTROL2006> EUROCONTROL, 2006 – The Advanced Emission Model (AEM3) - Validation Report, Jelinek, F., Carlier, S., Smith, J., EEC Report EEC/SEE/2004/004, Brüssel 2004 URL: http://www.eurocontrol.int/eec/public/standard_page/DOC_Report_2004_016.html http://www.eurocontrol.int/eec/public/standard_page/DOC_Report_2006_030.html )]