3.I - Agricultural: Other 1/3

3.I - Agricultural: Other

Short description

NFR-Code	Name	of Category	Method	AD	EF						
3.1	Agriculture: other										
consisting of	f/including sourc										
3.1	Storage of diges	tate from energy crops	T2 (NH ₃ , NO _x)	Q, PS	CS (NH ₃ , NO _x)						
Method(s)	applied		-		-						
	D										
	T1	Tier 1 / Simple Methodo	logy *								
	T2	Tier 2*									
	Tier 3 / Detailed Methodology *										
	С	CORINAIR									
	CS	Country Specific									
	M	Model									
* as describ	ed in the EMEP/El	EA Emission Inventory Gu	uidebook - 2019	, in cat	egory chapters.						
(source for) Activity Data										
	NS	National Statistics									
	RS	Regional Statistics									
	IS	International Statistics									
	PS	Plant Specific									
	As	Associations, business o									
	Q	specific Questionnaires	(or surveys)								
	M	Model / Modelled									
	С	Confidential									
(source for) Emission Fact										
	D	Default (EMEP Guideboo	k)								
	CS	Country Specific									
	PS	Plant Specific									
	M	Model / Modelled									
	С	Confidential									

NO	x NMVOC	SO ₂	NH ₃	PM _{2.5}	PM ₁₀	TSP	ВС	СО	Heavy Metals	POPs			
-/-	NA	NA	-/-	NA	NA	NA	NA	NA	NA	NA			
L/-	L/- key source by Level only												
-/T	-/T key source by Trend only												
L/T	T key source by both Level and Trend												
-/-	no key sou	rce foi	this p	ollutan	t								
IE	emission of	spec	fic pol	lutant I	Include	ed Else	ewhe	re (i.e	e. in another cat	egory)			
NE	emission of	spec	fic pol	lutant l	Not Es	timate	ed (ye	et)					
NA	specific pol	lutant	not e	nitted	from th	nis sou	ırce d	or act	ivity = N ot A pp	licable			
*				n	o anal	ysis do	one						

Country specifics

In 2022, NH_3 emissions from category 3.I (agriculture other) reached up to 0.49 % from total agricultural emissions, which is equal to ~ 2.3 kt NH_3 . NO_x emissions from category 3.I contribute 0.12 % (~ 0.12 kt) to the total agricultural emissions. All these emissions originate from the storage of digestate from energy crops (for details on anaerobic digestion of energy crops see Vos et al. 2024, Chapter 5.1¹⁾. The emissions resulting from the application of energy crop digestates as organic fertilizer are dealt with under 3.D.a.2.c.

3.I - Agricultural: Other 2/3

Activity Data

Time series of activity data have been provided by KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft / Association for Technology and Structures in Agriculture). From these data the amount of N in energy crops fed into anaerobic digestion was calculated.

Table 1: N amount in energy crops fed into anaerobic digestion

	N amount in energy crops in Gg N														
1990	1995	2000	2005	2010	2015	2016	2017	2018	2019	2020	2021	2022			
0.0	0.6	5.3	45.1	163.0	293.7	292.2	287.4	283.2	283.2	289.3	283.8	283.8			

Table 2: Distribution of gastight storage and storage in open tank of energy crop digestates

Distribution of gastight storage and non-gastight storage, in $\%$														
	1990	1995	2000	2005	2010	2015	2016	2017	2018	2019	2020	2021	2022	
gastight	0.0	4.7	9.4	15.8	42.2	64.0	65.6	67.1	68.7	70.2	71.8	73.3	73.3	
non-gastight	100.0	95.3	90.6	84.2	57.8	36.0	34.4	32.9	31.3	29.8	28.2	26.7	26.7	

Methodology

The calculation of emissions from storage of digestate from energy crops considers two different types of storage, i.e. gastight storage and open tank. The frequencies of these storage types are also provided by KTBL (see Table 2). There are no emissions of NH₃ and NO from gastight storage of digestate. Hence the total emissions from the storage of digestate are calculated by multiplying the amount of N in the digestate leaving the fermenter with the relative frequency of open tanks and the emission factor for open tank. The amount of N in the digestate leaving the fermenter is identical to the N amount in energy crops fed into anaerobic digestion (see Table 1) because N losses from pre-storage are negligible and there are no N losses from fermenter (see Vos et al. 2024, Chapter 5.1).

Emission factors

As no specific emission factor is known for the storage of digestion residues in open tanks, the NH $_3$ emission factor for storage of cattle slurry with crust in open tanks was adopted (0.045 kg NH $_3$ -N per kg TAN). This choice of emission factor is based on the fact that energy crops are, in general, co-fermented with animal manures (i. e. mostly slurry) and that a natural crust forms on the liquid digestates due to the relatively high dry matter content of the energy crops. The TAN content after the digestion process is 0.56 kg TAN per kg N. The NO emission factor for storage of digestion residues in open tanks was set to 0.0005 kg NO-N per kg N. Table 3 shows the resulting implied emission factors for NH $_3$ -N and NO-N. NO $_x$ emissions are related to NO-N emissions by the ratio of 46/14. This relationship also holds for NO-N and NO $_x$ emission factors.

Table 3: IEF for $\mathrm{NH_3}$ -N and NO-N emissions from storage of digested energy crops

1990	1995	2000	2005	2010	2015	2016	2017	2018	2019	2020	2021	2022		
IEF in kg NH₃-N per kg N in digested energy crops														
0.0252	0.0240	0.0228	0.0212	0.0146	0.0090	0.0086	0.0083	0.0079	0.0075	0.0071	0.0067	0.0067		
	IEF in kg NO-N per kg N in digested energy crops													
0.00050	0.00048	0.00045	0.00042	0.00029	0.00018	0.00017	0.00016	0.00016	0.00015	0.00014	0.00013	0.00013		

Trend discussion for Key Sources

NH₃ and NO_x from storage of anaerobically digested energy crops are no key source.

Recalculations

All time series of the emission inventory have completely been recalculated since 1990. Table REC-1 shows the effects of recalculations on NH_3 and NO_x emissions from storage of anaerobically digested energy crops. Differences to last year's submission occur in all years and are due to the update of activity data (see main page of the agricultural sector, Chapter 5 -

3.I - Agricultural: Other 3/3

NFR 3 - Agriculture (OVERVIEW), **recalculation No. 13**). For further details on recalculations see Vos et al. (2024), Chapter 1.3.

Table REC-1: Comparison of NH₃ and NO_x emissions of the submissions (SUB) 2023 and 2024

	NH3 / NOx emissions in Gg													
	SUB	1990	1995	2000	2005	2014	2015	2016	2017	2018	2019	2020	2021	2022
NH3	2023	0.0015	0.0180	0.1482	1.1624	3.2281	3.2124	3.0579	2.8835	2.7108	2.5822	2.5074	2.3137	2.3137
NH3	2022	0.0015	0.0190	0.1563	1.2267	3.2814	3.3428	3.3004	3.2741	3.2013	3.1419	3.1782	3.1782	
relat	ive change	0.00	0.00	-0.01	-0.06	-0.05	-0.13	-0.24	-0.39	-0.49	-0.56	-0.67	-0.86	
absolute	change [%]	-5.19	-5.19	-5.19	-5.24	-1.62	-3.90	-7.35	-11.93	-15.32	-17.81	-21.11	-27.20	
NOx	2023	0.0001	0.0010	0.0080	0.0624	0.1733	0.1725	0.1642	0.1548	0.1455	0.1386	0.1346	0.1242	0.1242
NOx	2022	0.0001	0.0010	0.0084	0.0659	0.1762	0.1795	0.1772	0.1758	0.1719	0.1687	0.1706	0.1706	
relat	ive change	0.00	0.00	0.00	0.00	0.00	-0.01	-0.01	-0.02	-0.03	-0.03	-0.04	-0.05	
absolute	change [%]	-5.19	-5.19	-5.19	-5.24	-1.62	-3.90	-7.35	-11.93	-15.32	-17.81	-21.11	-27.20	

For pollutant-specific information on recalculated emission estimates for Base Year and 2021, please see the tables following chapter 8.1 - Recalculations.

Uncertainty

Details are described in chapter 1.7.

1)

Vos C, Rösemann C, Haenel H-D, Dämmgen U, Döring U, Wulf S, Eurich-Menden B, Freibauer A, Döhler H, Steuer B, Osterburg B, Fuß R (2024) Calculations of gaseous and particulate emissions from German agriculture 1990 – 2022: Report on methods and data (RMD) Submission 2024. www.eminv-agriculture.de