1.B.2.c - Venting and Flaring ## 1.B.2.c - Flaring | Category Code | Method | | | | AD | | | | EF | | | | | | | |----------------------|--------|-----|-----|-------|-----|-----|----|-----|----|------|-----|-----|-----|------------------|-------------------| | 1.B.2.c | T2 | | | | AS | | | | | CS | | | | | | | Key Category | SO2 | NOx | ΝНз | NMVOC | СО | ВС | Pb | Hg | Cd | Diox | PAH | НСВ | TSP | PM ₁₀ | PM ₂ 5 | | 1.B.2.c | -/- | -/- | - | -/- | -/- | -/- | - | -/- | - | - | - | - | -/- | -/- | -/- | Pursuant to general requirements of the Technical Instructions on Air Quality Control TA Luft (2002), gases, steam, hydrogen and hydrogen sulphide released from pressure valves and venting equipment must be collected in a gas-collection system. Wherever possible, gases so collected are burned in process combustion. Where such use is not possible, the gases are piped to a flare. Flares used for flaring of such gases must fulfill at least the requirements for flares for combustion of gases from operational disruptions and from safety valves. For refineries and other types of plants in categories 1.B.2, flares are indispensable safety components. In crude-oil refining, excessive pressures can build up in process systems, for various reasons. Such excessive pressures have to be reduced via safety valves, to prevent tanks and pipelines from bursting. Safety valves release relevant products into pipelines that lead to flares. Flares carry out controlled burning of gases released via excessive pressures. When in place, flare-gas recovery systems liquify the majority of such gases and return them to refining processes or to refinery combustion systems. In the process, more than 99 % of the hydrocarbons in the gases are converted to CO2 and H2O. When a plant has such systems in operation, its flarehead will seldom show more than a small pilot flame. | | Unit | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2018 | 2019 | |----------------------------|----------------------------|------|------|-------|-------|------|------|------|------| | Flared natural gas | millions of m ³ | 36 | 33 | 36 | 18.7 | 12.1 | 10.5 | 10.6 | 15.6 | | Refined crude-oil quantity | millions of t | 107 | 96.5 | 107.6 | 114.6 | 95.4 | 93.4 | 87.7 | 87 | Flaring takes place in extraction and pumping systems and at refineries. In refineries, flaring operations are subdivided into regular operations and start-up / shut-down operations in connection with disruptions. | Flaring emissions in natural gas extraction NMVOC | | | | | | | |--|---|--|---|--|--|---------------------------| | Flaring emissions in natural gas extraction NO _x | | | | | | | | Flaring emissions in natural gas extraction SO ₂ | | | | | | | | Flaring emissions in natural gas extraction CO | | | | | | | | | Subs | stance | Unit | Value | | | | Flaring emissions at petroleum production facilities | | | | | | | | Flaring emissions at petroleum production facilities N | | | | 0.008 | | | | Flaring emissions at petroleum production facilities SC | | | | 0.010 | | | | Flaring emissions at petroleum production facilities CC | | | | 0 | | | | Source of emission factor | | | | | Valu | ie | | Flaring emissions at refineries: normal flaring operat | | | | | 0.00 | 14 | | Flaring emissions at refineries: normal flaring operat | | | | | 0.00 | 1 | | Flaring emissions at refineries: normal flaring operation | | | | | 0.00 | 3 | | Flaring emissions at refineries: normal flaring operations NOx | | | | | | | | Source of emission factor | | | | | | | | Flaring emissions at refineries: disruptions of flaring operations | | | | | | 0.001 | | Flaring emissions at refineries: disruptions of flaring operations | | | | | | 0.001 | | Flaring emissions at refineries: disruptions of flaring operations | | | | | | | | Flaring emissions at refineries: disruptions of flaring operations | | | | | | 0.004 | | | NOx
SO2
CO
facilities
facilities
facilities
ang opera
ang opera
ang opera
of flaring
of flaring | NOx k SO2 k CO k CO k Substantial Substant | NOx kg/ 1000 SO2 kg/ 1000 CO kg/ 1000 Substance facilities NMVOC facilities SO2 facilities CO Substance MMVO Substance facilities SO2 facilities CO Substance NMVO NG operations CO NG operations SO2 NG operations NOX Of flaring operations of flaring operations of flaring operations | NOx kg/ 1000 m³ SO2 kg/ 1000 m³ CO kg/ 1000 m³ Substance Unit facilities NMVOC kg/m facilities SO2 kg/t facilities CO kg/t facilities CO kg/t Substance ng operations CO ng operations CO ng operations NMVOC ng operations NMVOC ng operations SO2 ng operations NMV Substance of flaring operations CO of flaring operations CO of flaring operations CO SO2 | NOx kg/ 1000 m³ 1.269 SO2 kg/ 1000 m³ 8.885 CO kg/ 1000 m³ 0.726 Substance Unit Value facilities NMVOC kg/m³ 0.157 facilities NOx kg/t 0.008 facilities CO kg/t 0.010 facilities CO kg/t 0 Substance Unit ng operations NMVOC kg/m3 ng operations SO2 kg/m3 ng operations NOx kg/m3 substance of flaring operations ONMVOC NMVOC of flaring operations ONMVOC Substance of flaring operations ONMVOC SO2 | NOx kg/ 1000 m³ 1.269 | The emission factors have been derived from the 2004 and 2008 emissions declarations Theloke et al. 2013 [1]. In 2019, they were updated for CH4, N2O, CO, NMVOC, NOx and SO2, on the basis of Bender & von Müller, 2019 [2]. Venting emissions are taken into account in category 1.B.2.b.iii. The SO2 emissions are obtained from the activity data for the flared natural gas (Table 178) and an emission factor of 0.140 kg / 1,000 m³, a factor which takes account of an average H2S content of 5 % by volume. The emission factors are determined on the basis of emissions reports, crude-oil-refining capacity and total capacity utilisation at German refineries. The guide for this work consists of the evaluation assessment of Theloke et al. (2013) [1]. ## References - [1] Theloke, J., Kampffmeyer, T., Kugler, U., Friedrich, R., Schilling, S., Wolf, L., & Springwald, T. (2013). Ermittlung von Emissionsfaktoren und Aktivitätsraten im Bereich IPCC (1996) 1.B.2.a. i-vi Diffuse Emissionen aus Mineralöl und Mineralölprodukten (Förderkennzeichen 360 16 033). Stuttgart. - [2] Bender, M., & von Müller, G. (2019). Konsolidierung der Treibhausgasemissionsberechnungen unter der 2. Verpflichtungsperiode des Kyoto-Protokolls und der neuen Klimaschutz-Berichterstattungs-pflichten an die EU (FKZ 3716 41 107 0).