3.I - Agricultural: Other

Short description

NFR-C	ode		Nan	ne of C	Catego	ory			Method	AD		EF				
3.1	A	gricult	ure: ot			-										
consis	ting of /	-			tegorie	s:										
3.1	-		-		tate from energy crops $ T2 (NH_3, NO_x) Q, PS CS (NH_3, I)$											
Meth	od(s) ap						•									
)		Defa	ult											
	Т	1		_	1 / Sim	M ela	ethoo	loloa	v *							
	т	2		Tier					,							
	т	3		Tier	3 / Det	ailed	Meth	odolo	gy *							
		2		COR	INAIR											
	C	S		Cour	ntry Sp	ecific										
	r	4		Mod	Model											
* as d	escribed	in the	EMEP/	'EEA Er	nission	Inver	ntory	Guide	ebook - 201	9, in ca	tego	ry chapters				
(sour	ce for)	Activi	ty Dat	a												
	N	S		Nati	onal St	atistic	S									
	R	S		Regi	onal S	tatisti	cs									
	I	S		Inter	International Statistics											
	P	S			Plant Specific											
	Δ	s		Asso	Associations, business organisations											
		2		spec	specific Questionnaires (or surveys)											
	r	4		_	Model / Modelled											
		2			identia	al										
(sour	ce for)	Emissi	ion Fa	_												
)		_	ult (EN		uideb	ook)								
		S		_	ntry Sp											
	-	S		_	t Speci											
	-	1			el / Mo											
		2		Conf	identia	al										
NOx	NMVOC	SO ₂	NH ₃	PM _{2.5}	PM ₁₀	TSP	BC	CO	Heavy Met	tals P	DPs					
-/-	NA	NA	-/-	NA	NA	NA	NA	NA	NA	1	A					
L/- ke	y source	e by L e	evel on	ly												
-/T ke	y source	e by T r	end or	nly												
L/T ke	y source	e by bo	th L ev	el and	Trend											
-/- nc	key sou	irce fo	r this p	ollutar	nt											
IE er	nission c	of spec	ific pol	lutant	utant Included Elsewhere (i.e. in another category)											
	nission o		· · ·													
NA sp	ecific po	llutant	not e	mitted	from t	his so	urce o	or act	ivity = N ot	A pplica	ble					
*				r	no anal	vsis d	one									

Country specifics

In 2022, NH₃ emissions from category 3.I (agriculture other) reached up to 0.49 % from total agricultural emissions, which is equal to ~ 2.3 kt NH₃. NO_x emissions from category 3.I contribute 0.12 % (~ 0.12 kt) to the total agricultural emissions. All these emissions originate from the storage of digestate from energy crops (for details on anaerobic digestion of energy crops see Vos et al. 2024, Chapter 5.1¹). The emissions resulting from the application of energy crop digestates as organic fertilizer are dealt with under 3.D.a.2.c.

Activity Data

Time series of activity data have been provided by KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft / Association for Technology and Structures in Agriculture). From these data the amount of N in energy crops fed into anaerobic digestion was calculated.

Table 1: N amount in energy crops fed into anaerobic digestion

	N amount in energy crops in Gg N														
1990	1995	2000	2005	2010	2015	2016	2017	2018	2019	2020	2021	2022			
0.0	0.6	5.3	45.1	163.0	293.7	292.2	287.4	283.2	283.2	289.3	283.8	283.8			

Table 2: Distribution of gastight storage and storage in open tank of energy crop digestates

Dist	Distribution of gastight storage and non-gastight storage, in $\%$														
	1990	1995	2000	2005	2010	2015	2016	2017	2018	2019	2020	2021	2022		
gastight	0.0	4.7	9.4	15.8	42.2	64.0	65.6	67.1	68.7	70.2	71.8	73.3	73.3		
non-gastight	100.0	95.3	90.6	84.2	57.8	36.0	34.4	32.9	31.3	29.8	28.2	26.7	26.7		

Methodology

The calculation of emissions from storage of digestate from energy crops considers two different types of storage, i.e. gastight storage and open tank. The frequencies of these storage types are also provided by KTBL (see Table 2). There are no emissions of NH_3 and NO from gastight storage of digestate. Hence the total emissions from the storage of digestate are calculated by multiplying the amount of N in the digestate leaving the fermenter with the relative frequency of open tanks and the emission factor for open tank. The amount of N in the digestate leaving the fermenter is identical to the N amount in energy crops fed into anaerobic digestion (see Table 1) because N losses from pre-storage are negligible and there are no N losses from fermenter (see Rösemann et al. 2023, Chapter 5.1).

Emission factors

As no specific emission factor is known for the storage of digestion residues in open tanks, the NH_3 emission factor for storage of cattle slurry with crust in open tanks was adopted (0.045 kg NH_3 -N per kg TAN). This choice of emission factor is based on the fact that energy crops are, in general, co-fermented with animal manures (i. e. mostly slurry) and that a natural crust forms on the liquid digestates due to the relatively high dry matter content of the energy crops. The TAN content after the digestion process is 0.56 kg TAN per kg N. The NO emission factor for storage of digestion residues in open tanks was set to 0.0005 kg NO-N per kg N. Table 3 shows the resulting implied emission factors for NH_3 -N and NO-N. NO_x emissions are related to NO-N emissions by the ratio of 46/14. This relationship also holds for NO-N and NO_x emission factors.

1990	1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
	IEF in kg NH ₃ -N per kg N in digested energy crops														
0.0252	0.0240	0.0228	0.0212	0.0146	0.0132	0.0102	0.0096	0.0091	0.0089	0.0089	0.0089	0.0089	0.0087	0.0086	0.0086
	IEF in kg NO-N per kg N in digested energy crops														
0.00050	0.00050 0.00048 0.00045 0.00042 0.00029 0.00026 0.00020 0.00019 0.00018 0.00018 0.00018 0.00018 0.00018 0.00017														0.00017

Trend discussion for Key Sources

 $\rm NH_3$ and $\rm NO_x$ from storage of anaerobically digested energy crops are no key source.

Recalculations

All time series of the emission inventory have completely been recalculated since 1990. Table REC-1 shows the effects of recalculations on NH₃ and NO_x emissions from storage of anaerobically digested energy crops. Differences to last year's submission occur only in 2020 and are due to the update of activity data (see main page of the agricultural sector, Chapter 5 - NFR 3 - Agriculture (OVERVIEW), **recalculation reason No 15**). For further details on recalculations see Rösemann et al. (2032), Chapter 1.3.

Table REC-1: Comparison of NH₃ and NO_x emissions of the submissions (SUB) 2022 and 2023

	NH ₃ / NO _x emissions in Gg																
	SUB	1990	1995	2000	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
NH₃	2023	0.0015	0.0190	0.1563	1.2267	3.0426	3.4504	2.9206	3.3062	3.2814	3.3428	3.3004	3.2741	3.2013	3.1419	3.1782	3.1782
NH ₃	2022	0.0015	0.0190	0.1563	1.2267	3.0426	3.4504	2.9206	3.3062	3.2814	3.3428	3.3004	3.2741	3.2013	3.1419	3.1419	
NO _x	2023	0.0001	0.0010	0.0084	0.0659	0.1634	0.1852	0.1568	0.1775	0.1762	0.1795	0.1772	0.1758	0.1719	0.1687	0.1706	0.1706
NOx	2022	0.0001	0.0010	0.0084	0.0659	0.1634	0.1852	0.1568	0.1775	0.1762	0.1795	0.1772	0.1758	0.1719	0.1687	0.1687	

For **pollutant-specific information on recalculated emission estimates for Base Year and 2021**, please see the tables following chapter 8.1 - Recalculations.

Uncertainty

Details are described in chapter 1.7.

1)

Vos C, Rösemann C, Haenel H-D, Dämmgen U, Döring U, Wulf S, Eurich-Menden B, Freibauer A, Döhler H, Steuer B, Osterburg B, Fuß R (2024) Calculations of gaseous and particulate emissions from German agriculture 1990 – 2022: Report on methods and data (RMD) Submission 2024. www.eminv-agriculture.de