meta data for this page
1.A.3.a ii (i) - Domestic Civil Aviation: LTO
Short description
In NFR category 1.A.3.a ii (i) - Domestic Civil Aviation: LTO emissions from domestic flights between German airports occuring during LTO stage (Landing/Take-off: 0-3,000 feet) are reported.
Category Code | Method | AD | EF |
---|---|---|---|
1.A.3.a ii (i) | T1, T2, T3 | NS, M | CS, D, M |
|
NOx | NMVOC | SO2 | NH3 | PM2.5 | PM10 | TSP | BC | CO | Pb | Cd | Hg | As | Cr | Cu | Ni | Se | Zn | PCDD/F | B(a)P | B(b)F | B(k)F | I(x)P | PAH1-4 | HCB | PCBs |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | -/- | NE | -/- | -/- | -/- | -/- | -/- | NA | NA |
|
In the following, information on sub-category specific AD, (implied) emission factors and emission estimates are provided.
Methodology
Actitvity Data
Specific jet kerosene consumption during LTO-stage is calculated within TREMOD AV as described in the superordinate chapter.
Table 1: Percentual annual fuel consumption during LTO-stage of domestic flights
1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jet Kerosene | 30.0 | 29.3 | 27.8 | 27.5 | 27.5 | 27.6 | 28.0 | 28.1 | 28.3 | 28.1 | 27.5 | 32.9 | 31.8 | 28.5 |
Aviation Gasoline | 12.6 | 12.6 | 12.6 | 13.0 | 12.8 | 12.6 | 12.6 | 12.3 | 12.8 | 12.8 | 12.7 | 21.7 | 21.9 | 21.0 |
source: Allekotte et al. (2024) 1) &: Gores (2024) 2)
As explained above, the use of aviation gasoline is - due to a lack of further information - assumed to entirely take place within the LTO-range.
Table 2: annual LTO fuel consumption for domestic flights, in terajoule
1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jet Kerosene | 8,864 | 8,782 | 9,100 | 8,331 | 8,318 | 7,612 | 7,773 | 7,569 | 7,584 | 7,784 | 3,402 | 3,140 | 4,429 | 4,186 |
Aviation Gasoline | 264 | 123 | 121 | 78.2 | 62.6 | 62.0 | 51.3 | 49.7 | 49.4 | 40.5 | 26.6 | 32.0 | 35.6 | 21.6 |
∑ | 9,128 | 8,906 | 9,221 | 8,409 | 8,380 | 7,674 | 7,825 | 7,619 | 7,634 | 7,824 | 3,428 | 3,172 | 4,465 | 4,208 |
source: Allekotte et al. (2024) &: Gores (2024)
Emission factors
All country-specific emission factors used for emission reporting were basically ascertained within UBA project FKZ 360 16 029 (Knörr, W., Schacht, A., & Gores, S. (2012)) 3) and have since then been compiled, revised and maintained in TREMOD AV.
Furthermore, the newly implemented EF(BC) have been estimated via f-BCs as provided in the 2023 EMEP/EEA Guidebook 4), Chapter 1.A.3.a, 1.A.5.b Aviation, page 49: “Conclusion”.
For more details, please see the superordinate chapter on civil aviation.
Table 3: Country-specific emission factors, in kg/TJ
1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JET KEROSENE | ||||||||||||||
NH3 | 3.98 | 3.95 | 3.95 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 |
NMVOC | 36.1 | 36.2 | 38.8 | 39.5 | 38.6 | 44.8 | 42.3 | 44.6 | 48.0 | 50.2 | 80.4 | 92.2 | 72.8 | 48.7 |
NOx | 290 | 320 | 282 | 273 | 300 | 308 | 318 | 318 | 313 | 310 | 286 | 272 | 288 | 305 |
SOx | 19.7 | 19.5 | 19.5 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 |
BC1 | 1.37 | 1.51 | 1.49 | 1.55 | 1.45 | 1.44 | 1.39 | 1.37 | 1.46 | 1.32 | 1.38 | 1.44 | 1.39 | 1.25 |
PM2 | 2.86 | 3.15 | 3.10 | 3.23 | 3.02 | 3.01 | 2.89 | 2.85 | 3.04 | 2.75 | 2.87 | 2.99 | 2.91 | 2.61 |
CO | 227 | 225 | 293 | 305 | 273 | 280 | 264 | 267 | 280 | 289 | 402 | 442 | 372 | 369 |
AVIATION GASOLINE | ||||||||||||||
NH3 | NE | |||||||||||||
NMVOC | 673 | 672 | 673 | 687 | 675 | 672 | 663 | 654 | 674 | 669 | 666 | 667 | 663 | 668 |
NOx | 97.2 | 96.7 | 96.7 | 94.7 | 95.4 | 96.9 | 97.8 | 98.8 | 95.5 | 94.2 | 94.6 | 93.5 | 91.6 | 98.2 |
SOx | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 |
BC1 | 4.26 | 4.32 | 4.31 | 4.52 | 4.5 | 4.3 | 4.2 | 4.1 | 4.5 | 4.7 | 4.7 | 4.9 | 5.2 | 4.1 |
PM2 | 28.4 | 28.8 | 28.8 | 30.2 | 29.8 | 28.6 | 27.9 | 27.3 | 30.0 | 31.6 | 31.3 | 32.7 | 34.8 | 27.6 |
TSP3 | 43.5 | 44.0 | 43.9 | 45.3 | 45.0 | 43.8 | 43.1 | 42.5 | 45.2 | 46.8 | 46.4 | 47.8 | 50.0 | 42.8 |
CO | 16,026 | 16,098 | 16,095 | 15,647 | 16,133 | 16,131 | 16,436 | 16,740 | 16,287 | 16,667 | 16,761 | 16,948 | 17,407 | 16,236 |
1 estimated via a f-BCs (avgas: 0.15, jet kerosene: 0.48) as provided in EMEP/EEA (2023) 5), Chapter: 1.A.3.a, 1.A.5.b Aviation, Annex 3, Table A3.2 and Conclusions
2 EF(PM2.5,) also applied for PM10 and TSP (assumption: > 99% of TSP from diesel oil combustion consists of PM2.5)
3 also including TSP from lead: EF(TSP) = 1.6 x EF(Pb) - see road transport
For the country-specific emission factors applied for particulate matter, no clear indication is available, whether or not condensables are included.
For information on the emission factors for heavy-metal and POP exhaust emissions, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources.
Trend discussion for Key Sources
NFR sub-category 1.A.3.a ii (i) is no key source for emissions.
Basically, emission trends corespond directly with fuel consumption, resulting in a strong but temporary decline during an right after the Covid-19 pandemic. Here, with fuel consumption and emissions showing a steady upwards trend again in 2021 and 2022 for international flights, this “recovery” is much slower for domestic flights.
Where, for example, nitrogen oxides and sulphur oxides emissions are dominated by jet kerosene due to the amount of fuel used,…
… the majority of carbon monoxide stems from the consumption of avgas given the much higher emission factor applied to this fuel, with the emission trend following the trend in avgas consumption:
Lead emissions, on the other hand, with no emission factor available for jet kerosene, are only calculated for avgas. Based on a stable fuel lead-content, the emission trend follows the trend in avgas consumption:
Recalculations
Activity data
In contrast to previous submissions, the percentual shares of kerosene and avgas consumed during LTO remain almost unrevised with the only recalculation taking place for 2022.
Table 4: Revised percentual share of kerosene and avgas consumed during L/TO for domestic flights, in %
1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JET KEROSENE | |||||||||||||
current submission | 30.0 | 29.3 | 27.8 | 27.5 | 27.5 | 27.6 | 28.0 | 28.1 | 28.3 | 28.1 | 27.5 | 32.9 | 31.833 |
previous submission | 30.0 | 29.3 | 27.8 | 27.5 | 27.5 | 27.6 | 28.0 | 28.1 | 28.3 | 28.1 | 27.5 | 32.9 | 31.834 |
absolute change | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.001 |
relative change | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | -0.003% |
AVGAS | |||||||||||||
current submission | 12.6 | 12.6 | 12.6 | 13.0 | 12.8 | 12.6 | 12.6 | 12.3 | 12.8 | 12.8 | 12.7 | 21.7 | 21.9 |
previous submission | 12.6 | 12.6 | 12.6 | 13.0 | 12.8 | 12.6 | 12.6 | 12.3 | 12.8 | 12.8 | 12.7 | 21.7 | 21.9 |
absolute change | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
relative change | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
However, unrevised total inland deliveries in combination with a slightly increased percental share of kerosene allocated to domestic flights for 2022 result in slightly increased specific activity data for kerosene allocated to 1.A.3.a ii (i). The negligible revision visible for avgas in 2022 results, in contrast, from the application of rounded data in the previous submission.
Table 5: Revised fuel consumption data, in terajoule
1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JET KEROSENE | |||||||||||||
current submission | 8.864 | 8.782 | 9.100 | 8.331 | 8.318 | 7.612 | 7.773 | 7.569 | 7.584 | 7.784 | 3.402 | 3.140 | 4.429 |
previous submission | 8.864 | 8.782 | 9.100 | 8.331 | 8.318 | 7.612 | 7.773 | 7.569 | 7.584 | 7.784 | 3.402 | 3.140 | 4.428 |
absolute change | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.34 |
relative change | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.03% |
AVGAS | |||||||||||||
current submission | 264 | 123 | 121 | 78.2 | 62.6 | 62.0 | 51.3 | 49.7 | 49.4 | 40.5 | 26.6 | 32.0 | 35.607 |
previous submission | 264 | 123 | 121 | 78.2 | 62.6 | 62.0 | 51.3 | 49.7 | 49.4 | 40.5 | 26.6 | 32.0 | 35.610 |
absolute change | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.003 |
relative change | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | -0.01% |
In addition, several rather small revisions occur for some country-specific emission factors derived from Allekotte et al. (2024) 6) and for 2022.
Table 6: Revised annual country-specific emission factors for jet kerosene in 1.A.3.a ii (i), in [kg/TJ]
1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMMONIA | |||||||||||||
current submission | 3.98 | 3.95 | 3.95 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 |
previous submission | 3.98 | 3.95 | 3.95 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 | 3.97 |
absolute change | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
relative change | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
NMVOC | |||||||||||||
current submission | 36.1 | 36.2 | 38.8 | 39.5 | 38.6 | 44.8 | 42.3 | 44.6 | 48.0 | 50.2 | 80.4 | 92.2 | 72.81 |
previous submission | 36.1 | 36.2 | 38.8 | 39.5 | 38.6 | 44.8 | 42.3 | 44.6 | 48.0 | 50.2 | 80.4 | 92.2 | 72.83 |
absolute change | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.02 |
relative change | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | -0.03% |
NITROGENE OXIDES | |||||||||||||
current submission | 290 | 320 | 282 | 273 | 300 | 308 | 318 | 318 | 313 | 310 | 286 | 272 | 288.31 |
previous submission | 290 | 320 | 282 | 273 | 300 | 308 | 318 | 318 | 313 | 310 | 286 | 272 | 288.27 |
absolute change | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 |
relative change | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.01% |
SULPHUR OXIDES | |||||||||||||
current submission | 19.7 | 19.5 | 19.5 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 |
previous submission | 19.7 | 19.5 | 19.5 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 | 19.6 |
absolute change | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
relative change | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
BLACK CARBON | |||||||||||||
current submission | 1.37 | 1.51 | 1.49 | 1.55 | 1.45 | 1.44 | 1.39 | 1.37 | 1.46 | 1.32 | 1.38 | 1.44 | 1.3945 |
previous submission | 1.37 | 1.51 | 1.49 | 1.55 | 1.45 | 1.44 | 1.39 | 1.37 | 1.46 | 1.32 | 1.38 | 1.44 | 1.3943 |
absolute change | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0002 |
relative change | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.01% |
PARTICULATE MATTER | |||||||||||||
current submission | 2.86 | 3.15 | 3.10 | 3.23 | 3.02 | 3.01 | 2.89 | 2.85 | 3.04 | 2.75 | 2.87 | 2.99 | 2.9051 |
previous submission | 2.86 | 3.15 | 3.10 | 3.23 | 3.02 | 3.01 | 2.89 | 2.85 | 3.04 | 2.75 | 2.87 | 2.99 | 2.9048 |
absolute change | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0003 |
relative change | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.01% |
CARBON MONOXIDE | |||||||||||||
current submission | 227 | 225 | 293 | 305 | 273 | 280 | 264 | 267 | 280 | 289 | 402 | 442 | 371.79 |
previous submission | 227 | 225 | 293 | 305 | 273 | 280 | 264 | 267 | 280 | 289 | 402 | 442 | 371.87 |
absolute change | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.08 |
relative change | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | -0.02% |
For pollutant-specific information on recalculated emission estimates for Base Year and 2022, please see the recalculation tables following chapter 8.1 - Recalculations.
Uncertainties
For information on uncertainties, please see the main chapter on civil aviation.
Planned improvements
For information on planned improvements, please see main chapter on civil aviation.