meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

sector:agriculture:agricultural_other:start [2023/06/27 12:04] – [Table] kotzullasector:agriculture:agricultural_other:start [2024/11/06 13:54] (current) – external edit 127.0.0.1
Line 3: Line 3:
  
  
-NFR-Code                                         ^  Name of Category                        Method                              ^  AD    ^  EF                                  ^ + Category Code                                    ^  Name of Category                        Method                              ^  AD    ^  EF                                  ^ 
-| 3.I                                              | Agriculture: other                      |                                      |        |                                      | + 3.I                                              |  Agriculture: other                     |                                      |        |                                      | 
-**consisting of / including source categories**                                                                                                                               ||||| +//consisting of / including source categories://                                                                                                                               ||||| 
-| 3.I                                              | Storage of digestate from energy crops  | T2 (NH<sub>3</sub>, NO<sub>x</sub> | Q, PS  | CS (NH<sub>3</sub>, NO<sub>x</sub> |+ 3.I                                              | Storage of digestate from energy crops  | T2 (NH<sub>3</sub>, NO<sub>x</sub> | Q, PS  | CS (NH<sub>3</sub>, NO<sub>x</sub>)  
 +|  {{page>general:Misc:LegendEIT:start}}                                                                                                                                         |||||
  
-^                ^  NO<sub>x</sub>   NMVOC   SO<sub>2</sub>  ^  NH<sub>3</sub>   PM<sub>2.5</sub>   PM<sub>10</sub>   TSP   BC   CO   Pb   Cd  ^  Hg  ^  Diox  ^  PAH  ^  HCB  ^ +---- 
-| Key Category:  |  -/-             |  -      |  -               |  -/-             |  -                                |  -    |    |  -    -   |  -    -   |  -     |     |  -    | + 
- {{page>general:Misc:LegendEIT:start}} +^  NO<sub>x</sub>                         |  NMVOC   SO<sub>2</sub>  ^  NH<sub>3</sub>   PM<sub>2.5</sub>   PM<sub>10</sub>   TSP   BC   CO   Heavy Metals   POPs  | 
-\\+|  -/-                                    |  NA     |  NA              |  -/-             |  NA                |  NA               |  NA   |  NA  |  NA  |  NA            |  NA    
 +|  {{page>general:Misc:Legendkca:start}}                                                                                                                                 |||||||||||
  
 ==== Country specifics ==== ==== Country specifics ====
    
- +In 2022, NH<sub>3</sub> emissions from category 3.I (agriculture other) reached up to 0.49 % from total agricultural emissions, which is equal to ~ 2.3 kt NH<sub>3</sub>. NO<sub>x</sub> emissions from category 3.I contribute 0.12 % (~ 0.12 kt) to the total agricultural emissions. All these emissions originate from the storage of digestate from energy crops (for details on anaerobic digestion of energy crops see Vos et al. 2024, Chapter 5.1((Vos C, Rösemann C, Haenel H-D, Dämmgen U, Döring U, Wulf S, Eurich-Menden B, Freibauer A, Döhler H, Steuer B, Osterburg B, Fuß R (2024) Calculations of gaseous and particulate emissions from German agriculture 1990 – 2022: Report on methods and data (RMD) Submission 2024. www.eminv-agriculture.de)). The emissions resulting from the application of energy crop digestates as organic fertilizer are dealt with under 3.D.a.2.c.
- +
-In 2021, NH<sub>3</sub>  emissions from category 3.I (agriculture other) derived up to 0.% from total agricultural emissions, which is equal to ~ 3.2 kt NH<sub>3</sub> . NO<sub>x</sub>  emissions from category 3.I contribute 0.16 % (~ 0.17 kt) to the total agricultural emissions. All these emissions originate from the storage of digestate from energy crops (for details on anaerobic digestion of energy crops see Rösemann et al. 2023, Chapter 5.1 ((Rösemann C, Vos C, Haenel H-D, Dämmgen U, Döring U, Wulf S, Eurich-Menden B, Freibauer A, Döhler H, Steuer B, Osterburg B, Fuß R (2023) Calculations of gaseous and particulate emissions from German agriculture 1990 – 2021: Report on methods and data (RMD) Submission 2023. www.eminv-agriculture.de)). The emissions resulting from the application of energy crop digestates as organic fertilizer are dealt with under 3.D.a.2.c.+
  
 ==== Activity Data ==== ==== Activity Data ====
Line 24: Line 24:
  
  
-//Table 1: N amount in energy crops fed into anaerobic digestion// +__Table 1: N amount in energy crops fed into anaerobic digestionin [kt N]__ 
-^  N amount in energy crops in Gg                                                                                                                          |||||||||||||||| +^  1990   ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021   2022  ^ 
-^  1990                              ^  1995  ^  2000  ^  2005  ^  2010   2011  ^  2012  ^  2013  ^  2014   2015  ^  2016  ^  2017  ^  2018  ^  2019  ^ 2020   ^  2021  ^ +  0.|    0.|    5.|   45.|  163.0 |  293.|  292.|  287.|  283.|  283.|  289.|  283.|  283.8 | 
-                               0.|    0.|    5.|   47.|  172.0 |  214.|  234.|  284.|  297.|  308.|  307.|  302.|  297.6 |  297.8 |  304.2 | 304.2  |+\\
  
  
-//Table 2: Distribution of gastight storage and storage in open tank of energy crop digestates//+__Table 2: Distribution of gastight storage and storage in open tank of energy crop digestates, in [%]__ 
 +|                1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^ 
 +| gastight      |    0.0 |    4.7 |    9.4 |   15.8 |   42.2 |   64.0 |   65.6 |   67.1 |   68.7 |   70.2 |   71.8 |   73.3 |   73.3 | 
 +| non-gastight  |    100 |   95.3 |   90.6 |   84.2 |   57.8 |   36.0 |   34.4 |   32.9 |   31.3 |   29.8 |   28.2 |   26.7 |   26.7 |
  
-^  Distribution of gastight storage and non-gastight storage, in %                                                                                                                                 ||||||||||||||||| 
-^                                                                    1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2011  ^  2012  ^  2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^ 2020  ^  2021  ^ 
-| gastight                                                          | 0.0    | 4.7    | 9.4    | 15.8   | 42.2   | 47.5   | 59.4   | 61.9   | 63.9   | 64.6   | 64.8   | 64.5   | 64.8   | 65.5   | 65.8  | 65.8   | 
-| non-gastight                                                      | 100.0  | 95.3   | 90.6   | 84.2   | 57.8   | 52.5   | 40.6   | 38.1   | 36.1   | 35.4   | 35.2   | 35.5   | 35.2   | 34.5   | 34.2  | 34.2   | 
-  
 ==== Methodology ==== ==== Methodology ====
  
-The calculation of emissions from storage of digestate from energy crops considers two different types of storage, i.e. gastight storage and open tank. The frequencies of these storage types are also provided by KTBL (see Table 2). There are no emissions of NH<sub>3</sub>  and NO from gastight storage of digestate. Hence the total emissions from the storage of digestate are calculated by multiplying the amount of N in the digestate leaving the fermenter with the relative frequency of open tanks and the emission factor for open tank. The amount of N in the digestate leaving the fermenter is identical to the N amount in energy crops fed into anaerobic digestion (see Table 1) because N losses from pre-storage are negligible and there are no N losses from fermenter (see Rösemann et al. 2023, Chapter 5.1).+The calculation of emissions from storage of digestate from energy crops considers two different types of storage, i.e. gastight storage and open tank. The frequencies of these storage types are also provided by KTBL (see Table 2). There are no emissions of NH<sub>3</sub>  and NO from gastight storage of digestate. Hence the total emissions from the storage of digestate are calculated by multiplying the amount of N in the digestate leaving the fermenter with the relative frequency of open tanks and the emission factor for open tank. The amount of N in the digestate leaving the fermenter is identical to the N amount in energy crops fed into anaerobic digestion (see Table 1) because N losses from pre-storage are negligible and there are no N losses from fermenter (see Vos et al. 2024, Chapter 5.1).
  
 ==== Emission factors ==== ==== Emission factors ====
  
 +As no specific emission factor is known for the storage of digestion residues in open tanks, the NH<sub>3</sub> emission factor for storage of cattle slurry with crust in open tanks was adopted (0.045 kg NH<sub>3</sub> -N per kg TAN). This choice of emission factor is based on the fact that energy crops are, in general, co-fermented with animal manures (i. e. mostly slurry) and that a natural crust forms on the liquid digestates due to the relatively high dry matter content of the energy crops. 
  
-As no specific emission factor is known for the storage of digestion residues in open tanks, the NH<sub>3</sub>  emission factor for storage of cattle slurry with crust in open tanks was adopted (0.045 kg NH<sub>3</sub> -N per kg TAN). This choice of emission factor is based on the fact that energy crops are, in general, co-fermented with animal manures (i. e. mostly slurry) and that a natural crust forms on the liquid digestates due to the relatively high dry matter content of the energy crops. The TAN content after the digestion process is 0.56 kg TAN per kg N. The NO emission factor for storage of digestion residues in open tanks was set to 0.0005 kg NO-N per kg N. Table 3 shows the resulting implied emission factors for NH<sub>3</sub> -N and NO-N. NO<sub>x</sub>  emissions are related to NO-N emissions by the ratio of 46/14. This relationship also holds for NO-N and NO<sub>x</sub>  emission factors. +The TAN content after the digestion process is 0.56 kg TAN per kg N. The NO emission factor for storage of digestion residues in open tanks was set to 0.0005 kg NO-N per kg N. 
- +
- +
-//Table 3: IEF for NH<sub>3</sub> -N and NO-N emissions from storage of digested energy crops// +
- +
-^  1990                                                              ^  1995    ^  2000    ^  2005    ^  2010    ^  2011    ^  2012    ^  2013    ^  2014    ^  2015    ^  2016    ^  2017    ^  2018    ^  2019    ^  2020    ^  2021    ^ +
-|  **IEF in kg NH<sub>3</sub>-N per kg N in digested energy crops**                                                                                                                                                        ^^^^^^^^^^^^^^^^ +
-|                                                             0.0252 |   0.0240 |   0.0228 |   0.0212 |   0.0146 |   0.0132 |   0.0102 |   0.0096 |   0.0091 |   0.0089 |   0.0089 |   0.0089 |   0.0089 |   0.0087 |   0.0086 | 0.0086   | +
-|  **IEF in kg NO-N per kg N in digested energy crops **                                                                                                                                                                   ^^^^^^^^^^^^^^^^ +
-|                                                            0.00050 |  0.00048 |  0.00045 |  0.00042 |  0.00029 |  0.00026 |  0.00020 |  0.00019 |  0.00018 |  0.00018 |  0.00018 |  0.00018 |  0.00018 |  0.00017 |  0.00017 | 0.00017  |+
  
 +The following table shows the resulting implied emission factors for NH<sub>3</sub> -N and NO-N. NO<sub>x</sub> emissions are related to NO-N emissions by the ratio of 46/14. This relationship also holds for NO-N and NO<sub>x</sub> emission factors.
  
 +__Table 3: IEF for NH<sub>3</sub> -N and NO-N emissions from storage of digested energy crops__
 +^  1990                                                            1995    ^  2000    ^  2005    ^  2010    ^  2015    ^  2016    ^  2017    ^  2018    ^  2019    ^  2020    ^  2021    ^  2022    ^
 +|  IEF in kg NH<sub>3</sub>-N per kg N in digested energy crops                                                                                                                           |||||||||||||
 +| 0.0252                                                          | 0.0240   | 0.0228   | 0.0212   | 0.0146   | 0.0090   | 0.0086   | 0.0083   | 0.0079   | 0.0075   | 0.0071   | 0.0067   | 0.0067   |
 +|  IEF in kg NO-N per kg N in digested energy crops                                                                                                                                       |||||||||||||
 +| 0.00050                                                         | 0.00048  | 0.00045  | 0.00042  | 0.00029  | 0.00018  | 0.00017  | 0.00016  | 0.00016  | 0.00015  | 0.00014  | 0.00013  | 0.00013  |
  
  
Line 66: Line 63:
 ==== Recalculations ==== ==== Recalculations ====
  
-All time series of the emission inventory have completely been recalculated since 1990. Table REC-1 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions from storage of anaerobically digested energy crops. Differences to last year’s submission occur only in 2020 and are due to the update of activity data (see main page of the agricultural sector, [[sector:agriculture:start|Chapter 5 - NFR 3 - Agriculture (OVERVIEW)]], **recalculation reason No 15**). For further details on recalculations see Rösemann et al. (2032), Chapter 1.3.+All time series of the emission inventory have completely been recalculated since 1990.  
 + 
 +The following table shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions from storage of anaerobically digested energy crops. 
  
-//Table REC-1: Comparison of NH<sub>3</sub> and NO<sub>x</sub> emissions of the submissions (SUB2022 and 2023//+Differences to last year’s submission occur in all years and due to the update of activity data (see [[sector:agriculture:start|main page of the agricultural sector]], Chapter 5 - NFR 3 - Agriculture (OVERVIEW), **recalculation No. 13**). For further details on recalculations see Vos et al. (2024), Chapter 1.3. 
  
-^  NH<sub>3</sub> NO<sub>x</sub> emissions in Gg                                                                                                                                                         |||||||||||||||||| +__Table 4 - REC-1: Revised NH<sub>3</sub> and NO<sub>x</sub> emissionsin kilotonnes__ 
-^                                                    SUB  ^  1990    1995    2000    2005   ^  2010    2011    2012    2013   ^  2014    2015    2016    2017    2018    2019    2020    2021   ^ +                     ^  1990    1995    2000    2005    2014    2015    2016    2017    2018    2019    2020    2021   ^  2022   ^ 
-NH<sub>3</sub>                                    2023  |  0.0015 |  0.0190 |  0.1563 |  1.2267 |  3.0426 |  3.4504 |  2.9206 |  3.3062 |  3.2814 |  3.3428 |  3.3004 |  3.2741 |  3.2013 |  3.1419 |  3.1782 | 3.1782  +**Ammonia**                  |                                                                                                 | 
-NH<sub>3</sub>                                    2022   0.0015  0.0190  0.1563 |  1.2267  3.0426 |  3.4504 |  2.9206 |  3.3062 |  3.2814 |  3.3428 |  3.3004 |  3.2741 |  3.2013 |  3.1419 3.1419          | +^ current submission   |  0.0015 |  0.0180 |  0.1482 |  1.1624 |  3.2281 |  3.2124 |  3.0579 |  2.8835 |  2.7108 |  2.5822 |  2.5074 |  2.3137 |  2.3137 | 
-NO<sub>x</sub>                                    | 2023   0.0001 |  0.0010 |  0.0084 |  0.0659 |  0.1634 |  0.1852 |  0.1568 |  0.1775 |  0.1762 |  0.1795 |  0.1772 |  0.1758 |  0.1719 |  0.1687 |  0.1706 | 0.1706  +^ previous submission  |  0.0015 |  0.0190 |  0.1563 |  1.2267 |  3.2814 |  3.3428 |  3.3004 |  3.2741 |  3.2013 |  3.1419 |  3.1782 |  3.1782 |         
-NO<sub>x</sub>                                    2022   0.0001  0.0010  0.0084  0.0659  0.1634  0.1852  0.1568  0.1775  0.1762  0.1795 |  0.1772 |  0.1758 |  0.1719 |  0.1687 0.1687          |+^ absolute change         0.00    0.00   -0.01   -0.06   -0.05   -0.13 |   -0.24 |   -0.39 |   -0.49 |   -0.56 |   -0.67 |   -0.86 |         | 
 +^ relative change [%]  |   -5.19 |   -5.19 |   -5.19 |   -5.24 |   -1.62   -3.90 |   -7.35 |  -11.93 |  -15.32 |  -17.81 |  -21.11 |  -27.20 |         | 
 +**Nitrogen oxides**  |                                                                                                         | 
 +^ current submission    0.0001 |  0.0010 |  0.0080 |  0.0624  0.1733 |  0.1725  0.1642  0.1548 |  0.1455 |  0.1386 |  0.1346 |  0.1242 |  0.1242 | 
 +^ previous submission  |  0.0001 |  0.0010 |  0.0084 |  0.0659 |  0.1762 |  0.1795 |  0.1772 |  0.1758 |  0.1719 |  0.1687 |  0.1706 |  0.1706 |         
 +^ absolute change         0.00    0.00    0.00    0.00    0.00   -0.01   -0.01   -0.02   -0.03   -0.03   -0.04   -0.05         | 
 +^ relative change [%]  |   -5.19 |   -5.19 |   -5.19 |   -5.24 |   -1.62 |   -3.90 |   -7.35 |  -11.93 |  -15.32 |  -17.81  -21.11 |  -27.20 |         |
  
-<WRAP center round info 60%> +<WRAP center round info 65%> 
-For **pollutant-specific information on recalculated emission estimates for Base Year and 2020**, please see the pollutant specific recalculation tables following [[general:recalculations:start|chapter 8.1 - Recalculations]].+For **pollutant-specific information on recalculated emission estimates for Base Year and 2021**, please see the tables following [[general:recalculations:start|chapter 8.1 - Recalculations]].
 </WRAP> </WRAP>
 ==== Uncertainty ==== ==== Uncertainty ====