meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

sector:agriculture:agricultural_soils:start [2024/04/16 14:53] – [Recalculations] kotzullasector:agriculture:agricultural_soils:start [2024/11/06 14:54] (current) – external edit 127.0.0.1
Line 13: Line 13:
 | 3.D.d                                                                                                                      | Off-farm storage, handling and transport of bulk agricultural products                                  NA & NR (Black Carbon only)                                                                     ||| | 3.D.d                                                                                                                      | Off-farm storage, handling and transport of bulk agricultural products                                  NA & NR (Black Carbon only)                                                                     |||
 | [[start#de_-_cultivated_crops|3.D.e]]                                                                                      | Cultivated crops                                                                                       | T2 (NMVOC)                                    | NS, RS  | D                                        | | [[start#de_-_cultivated_crops|3.D.e]]                                                                                      | Cultivated crops                                                                                       | T2 (NMVOC)                                    | NS, RS  | D                                        |
-| [[3Df_Agriculture other|3.D.f]]                                                                                            Agriculture: Other (including use of pesticides)                                                       | T2 (HCB)                                      | NS      | D                                        |+| [[use_of_pesticides|3.D.f]]                                                                                                Use of pesticides                                                                                      | T2 (HCB)                                      | NS      | D                                        |
  
 ---- ----
Line 51: Line 51:
 The calculation of NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from the application of synthetic fertilizers is described in Vos et al. (2024), Chapters 5.2.1.2 and 5.2.2.2 1)[(Vos2024)].  The calculation of NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from the application of synthetic fertilizers is described in Vos et al. (2024), Chapters 5.2.1.2 and 5.2.2.2 1)[(Vos2024)]. 
 ==== Activity Data ==== ==== Activity Data ====
 +
 German statistics report the amounts of fertilizers sold which are assumed to equal the amounts that are applied. Since the 2021 submission, storage effects are approximated by applying a moving average to the sales data (moving centered three-year average, for the last year a weighted two-year average, which assigns 2/3 of the weight to the last year). Since the year 2022, data for the sales of urea that is stabilized with urease inhibitor is available. It cannot be published because of data-privacy issues. Therefore, the emissions are calculated and provided by the federal statistical office using the emission factors as described below. The activity data are published in aggregate for urea, urea+inhibitor and nitrogen solutions to maintain confidentiality. For details see Vos et al. (2024), Chapter 2.8. German statistics report the amounts of fertilizers sold which are assumed to equal the amounts that are applied. Since the 2021 submission, storage effects are approximated by applying a moving average to the sales data (moving centered three-year average, for the last year a weighted two-year average, which assigns 2/3 of the weight to the last year). Since the year 2022, data for the sales of urea that is stabilized with urease inhibitor is available. It cannot be published because of data-privacy issues. Therefore, the emissions are calculated and provided by the federal statistical office using the emission factors as described below. The activity data are published in aggregate for urea, urea+inhibitor and nitrogen solutions to maintain confidentiality. For details see Vos et al. (2024), Chapter 2.8.
  
-//Table 1: AD for the estimation of NH<sub>3</sub> and NOx emissions from application of synthetic fertilizers//+__Table 1: AD for the estimation of NH<sub>3</sub> and NO<sub>x</sub> emissions from application of synthetic fertilizers__
 ^  Application of manure in [kt N]                                                                                                  ||||||||||||| ^  Application of manure in [kt N]                                                                                                  |||||||||||||
 ^  1990                              1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^ ^  1990                              1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^
Line 64: Line 65:
 The emission factors for NH<sub>3</sub> depend on fertilizer type, see EMEP (2019)-3D-15. Table 2 lists the EMEP emission factors for the fertilizers used in the inventory. In order to reflect average German conditions, the emission factors for cool climate and a pH value lower than 7 was chosen. For urea fertilizer the German fertilizer ordinance prescribes the use of urease inhibitors or the immediate incorporation into the soil from 2020 onwards. The NH<sub>3</sub> emission factor for urea fertilizers is therefore reduced by 70% from 2020 onwards for the immediate incorporation of urea, according to  Bittman et al. (2014, Table 15)((Bittman, S., Dedina, M., Howard C.M., Oenema, O., Sutton, M.A., (eds) (2014): Options for Ammonia Mitigation. Guidance from the UNECE task Force on Reactive Nitrogen. Centre for Ecology and Hydrology, Edinburgh, UK.)). For the use of urease inhibitors the emission factor for urea fertilizer is reduced by 60%. For details see Vos et al. (2024), Chapter 5.2.1.2. The emission factors for NH<sub>3</sub> depend on fertilizer type, see EMEP (2019)-3D-15. Table 2 lists the EMEP emission factors for the fertilizers used in the inventory. In order to reflect average German conditions, the emission factors for cool climate and a pH value lower than 7 was chosen. For urea fertilizer the German fertilizer ordinance prescribes the use of urease inhibitors or the immediate incorporation into the soil from 2020 onwards. The NH<sub>3</sub> emission factor for urea fertilizers is therefore reduced by 70% from 2020 onwards for the immediate incorporation of urea, according to  Bittman et al. (2014, Table 15)((Bittman, S., Dedina, M., Howard C.M., Oenema, O., Sutton, M.A., (eds) (2014): Options for Ammonia Mitigation. Guidance from the UNECE task Force on Reactive Nitrogen. Centre for Ecology and Hydrology, Edinburgh, UK.)). For the use of urease inhibitors the emission factor for urea fertilizer is reduced by 60%. For details see Vos et al. (2024), Chapter 5.2.1.2.
  
-//Table 2: Synthetic fertilizers, emission factors in kg NH<sub>3</sub> per kg fertilizer N    //+__Table 2: Synthetic fertilizers, emission factors in kg NH<sub>3</sub> per kg fertilizer N__
 ^ Fertilizer type                          EF     ^ ^ Fertilizer type                          EF     ^
 | calcium ammonium nitrate                |   0.008 | | calcium ammonium nitrate                |   0.008 |
Line 75: Line 76:
 | other straight fertilizers              |   0.010 | | other straight fertilizers              |   0.010 |
  
-For NO<sub>x</sub>, the simpler methodology by EMEP (2019)-3D-11 was used. The emission factor 0.040 from EMEP, 2019-3D, Table 3.1 has the units of kg N2O per kg fertilizer N and was derived from ((Stehfest E., Bouwman L. (2006): N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modelling of global emissions. Nutr. Cycl. Agroecosyst. 74, 207 – 228.))+For NO<sub>x</sub>, the simpler methodology by EMEP (2019)-3D-11 was used. The emission factor 0.040 from EMEP, 2019-3D, Table 3.1 has the unit of [kg N<sub>2</sub>per kg fertilizer Nand was derived from ((Stehfest E., Bouwman L. (2006): N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modelling of global emissions. Nutr. Cycl. Agroecosyst. 74, 207 – 228.)).
-The German inventory uses the emission factor 0.012 kg NO-N per kg N derived from Stehfest and Bouwman (2006). This is equivalent to an emission factor of 0.03943 kg NO<sub>x</sub> per kg fertilizer N (obtained by multiplying 0.012 kg NO-N per kg N with the molar weight ratio 46/14 for NO<sub>2</sub>: NO). The inventory uses the unrounded emission factor+
  
 +The German inventory uses the emission factor 0.012 kg NO-N per kg N derived from Stehfest and Bouwman (2006). This is equivalent to an emission factor of 0.03943 kg NO<sub>x</sub> per kg fertilizer N (obtained by multiplying 0.012 kg NO-N per kg N with the molar weight ratio 46/14 for NO<sub>2</sub>: NO). The inventory uses the unrounded emission factor. 
  
-//Table 3: Emission factor for NO<sub>x</sub> emissions from fertilizer application// 
  
 +__Table 3: Emission factor for NO<sub>x</sub> emissions from fertilizer application__
 ^  Emission factor    kg NO-N  per kg fertilizer N  ^  kg NO<sub>x</sub> per kg fertilizer N  ^ ^  Emission factor    kg NO-N  per kg fertilizer N  ^  kg NO<sub>x</sub> per kg fertilizer N  ^
 | EF<sub>fert</sub>  |                          0.012 |                                   0.039 | | EF<sub>fert</sub>  |                          0.012 |                                   0.039 |
Line 120: Line 121:
 The frequencies of application techniques and incorporation times as well as the underlying data sources are described in Vos et al. (2024), Chapter 2.5. The frequencies are provided. in the NID 2024((NIR (2024): National Inventory Report 2024 for the German Greenhouse Gas Inventory 1990-2022. Available in April 2024.)), Chapter 17.3.1.  The frequencies of application techniques and incorporation times as well as the underlying data sources are described in Vos et al. (2024), Chapter 2.5. The frequencies are provided. in the NID 2024((NIR (2024): National Inventory Report 2024 for the German Greenhouse Gas Inventory 1990-2022. Available in April 2024.)), Chapter 17.3.1. 
  
-//Table 5: AD for the estimation of NH<sub>3</sub> and  NO<sub>x</sub> emissions from application of manure//+__Table 5: AD for the estimation of NH<sub>3</sub> and  NO<sub>x</sub> emissions from application of manure__
 ^  Application of manure in [kt N]                                                                                                  ||||||||||||| ^  Application of manure in [kt N]                                                                                                  |||||||||||||
 ^  1990                              1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^ ^  1990                              1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^
Line 131: Line 132:
  
 ==== Emission factors ==== ==== Emission factors ====
-Table 5 shows the time series of the overall German NH<sub>3</sub> IEF defined as the ratio of total NH<sub>3</sub>-N emission from manure application to the total amount of N spread with manure. 
  
-//Table 6: IEF for NH<sub>3</sub>–N from application of manure//+The following table shows the time series of the overall German NH<sub>3</sub> IEF defined as the ratio of total NH<sub>3</sub>-N emission from manure application to the total amount of N spread with manure. 
 + 
 +__Table 6: IEF for NH<sub>3</sub>–N from application of manure__
 ^  IEF in [kg NH3-N per kg N in applied manure]                                                                                                              ||||||||||||| ^  IEF in [kg NH3-N per kg N in applied manure]                                                                                                              |||||||||||||
 ^  1990                                          ^  1995    2000    2005    2010    2015    2016    2017    2018    2019    2020    2021    2022   ^ ^  1990                                          ^  1995    2000    2005    2010    2015    2016    2017    2018    2019    2020    2021    2022   ^
Line 141: Line 143:
 Both NH<sub>3</sub> and NO<sub>x</sub> emissions from the application of animal manures are key sources. Total NO<sub>x</sub> is calculated proportionally to the total N in the manures applied which decreased remarkably from 1990 to 1991 due to the decline in animal numbers following the German reunification (reduction of livestock numbers in Eastern Germany). In the 1990s and 2000s this was followed by a weakened decline in animal manure amounts. From 2010 to 2014 there was a slight increase and since then the amount of N in manure applied has been declining again, see Table 5. The NO<sub>x</sub> emissions follow these trends. For total NH<sub>3</sub> emissions there is a negative trend. This is due to the decreasing amounts of animal manures and the increasing use of application practices with lower NH<sub>3</sub> emission factors.  Both NH<sub>3</sub> and NO<sub>x</sub> emissions from the application of animal manures are key sources. Total NO<sub>x</sub> is calculated proportionally to the total N in the manures applied which decreased remarkably from 1990 to 1991 due to the decline in animal numbers following the German reunification (reduction of livestock numbers in Eastern Germany). In the 1990s and 2000s this was followed by a weakened decline in animal manure amounts. From 2010 to 2014 there was a slight increase and since then the amount of N in manure applied has been declining again, see Table 5. The NO<sub>x</sub> emissions follow these trends. For total NH<sub>3</sub> emissions there is a negative trend. This is due to the decreasing amounts of animal manures and the increasing use of application practices with lower NH<sub>3</sub> emission factors. 
 ==== Recalculations ==== ==== Recalculations ====
-Table 7 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub>For all years the total emissions of NH<sub>3</sub> and NO<sub>x</sub> from application of manure are slightly higher than those of last year’s submission. + 
 +For all yearsthe total emissions of NH<sub>3</sub> and NO<sub>x</sub> from application of manure are slightly higher than those of last year’s submission.  
 These differences are predominantly caused by a higher estimate of manure N, which is applied, compared to the last submission. Most of the recalculations (except No. 2, 11, 12) have an effect on this, some are increasing the emissions (esp. **No. 1** (new animal categories) and **No. 6** (correction of poultry numbers before 2013). **Recalculation No. 13** (update of anaerobic digestion data) results to changes in both directions for different animal categories, see [[sector:agriculture:start|main page of the agricultural sector]], list of recalculation reasons.  These differences are predominantly caused by a higher estimate of manure N, which is applied, compared to the last submission. Most of the recalculations (except No. 2, 11, 12) have an effect on this, some are increasing the emissions (esp. **No. 1** (new animal categories) and **No. 6** (correction of poultry numbers before 2013). **Recalculation No. 13** (update of anaerobic digestion data) results to changes in both directions for different animal categories, see [[sector:agriculture:start|main page of the agricultural sector]], list of recalculation reasons. 
 Further details on recalculations are described in Vos et al. (2024), Chapter 1.3.  Further details on recalculations are described in Vos et al. (2024), Chapter 1.3. 
Line 164: Line 168:
 The calculation of NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from application of sewage sludge is described in Vos et al. (2024), Chapters 5.2.1.2 and 5.2.2.2.  The calculation of NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from application of sewage sludge is described in Vos et al. (2024), Chapters 5.2.1.2 and 5.2.2.2. 
 ==== Activity data ==== ==== Activity data ====
-N quantities from application of sewage sludge were calculated from data of the German Environment Agency and (since 2009) from data of the Federal Statistical Office (see Table 7).  
  
-//Table 8: AD for the estimation of NH<sub>3</sub> and NO<sub>x</sub> emissions from application of sewage sludge//+N quantities from application of sewage sludge were calculated from data of the German Environment Agency and (since 2009) from data of the Federal Statistical Office.  
 + 
 +__Table 8: AD for the estimation of NH<sub>3</sub> and NO<sub>x</sub> emissions from application of sewage sludge__
 ^  Application of sewage sludge in [kt N]                                                                                                  ||||||||||||| ^  Application of sewage sludge in [kt N]                                                                                                  |||||||||||||
 ^  1990                                    ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^ ^  1990                                    ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^
Line 184: Line 189:
 ==== Recalculations ==== ==== Recalculations ====
  
-Table 8 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions. Due to an update of the activity data the emission estimates are different compared to the last submission in most years, sometimes higher and sometimes lower (see [[sector:agriculture:start|main page of the agricultural sector]], **recalculation No. 12**). Further details on recalculations are described in Vos et al. (2024), Chapter 1.3. +Due to an update of the activity datathe emission estimates are different compared to the last submission in most years, sometimes higher and sometimes lower (see [[sector:agriculture:start|main page of the agricultural sector]], **recalculation No. 12**). Further details on recalculations are described in Vos et al. (2024), Chapter 1.3. 
  
-__Table 8: Revised NH<sub>3</sub> and NO<sub>x</sub> emissions, in kilotonnes__+__Table 9: Revised NH<sub>3</sub> and NO<sub>x</sub> emissions, in kilotonnes__
 ^                                                                  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^ ^                                                                  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^
 | **Ammonia**                                                                                                                                                             |||||||||||||| | **Ammonia**                                                                                                                                                             ||||||||||||||
Line 212: Line 217:
  
 ==== Activity data ==== ==== Activity data ====
 +
 Activity data is the amount of N in residues from anaerobic digestion of energy crops and waste and of compost from biowaste and green waste when leaving storage, as well as the amount of N in imported animal manures. For energy crops this is the N contained in the energy crops when being fed into the digestion process minus the N losses by emissions of N species from the storage of the residues (see 3.I). N losses from pre-storage are negligible and there are no N losses from fermenter (see Vos et al. (2024), Chapter 5.1). For residues from digested waste, compost from biowaste and compost from green waste the amount of N was derived from the waste statistics of the Federal Statistical Office (see Vos et al. (2024), Chapter 2.8). For imported manure the amounts of N were derived from statistics published by CBS (Statistics Netherlands) and RVO (Rijksdienst voor Ondernemend Nederland) The imported manure is categorized into cattle slurry, pig slurry, poultry manure, horse manure and mixed solid manure. Only imported manures from The Netherlands are taken into account, as for other countries the amounts of imported manures are unknown as are the amounts of exported manure. For details see Vos et al. (2024), Chapter 2.8. Activity data is the amount of N in residues from anaerobic digestion of energy crops and waste and of compost from biowaste and green waste when leaving storage, as well as the amount of N in imported animal manures. For energy crops this is the N contained in the energy crops when being fed into the digestion process minus the N losses by emissions of N species from the storage of the residues (see 3.I). N losses from pre-storage are negligible and there are no N losses from fermenter (see Vos et al. (2024), Chapter 5.1). For residues from digested waste, compost from biowaste and compost from green waste the amount of N was derived from the waste statistics of the Federal Statistical Office (see Vos et al. (2024), Chapter 2.8). For imported manure the amounts of N were derived from statistics published by CBS (Statistics Netherlands) and RVO (Rijksdienst voor Ondernemend Nederland) The imported manure is categorized into cattle slurry, pig slurry, poultry manure, horse manure and mixed solid manure. Only imported manures from The Netherlands are taken into account, as for other countries the amounts of imported manures are unknown as are the amounts of exported manure. For details see Vos et al. (2024), Chapter 2.8.
  
-//Table 9: AD for the estimation of NH<sub>3</sub> and NO<sub>x</sub> emissions emissions from application of other organic fertilizers // +__Table 10: AD for the estimation of NH<sub>3</sub> and NO<sub>x</sub> emissions emissions from application of other organic fertilizers__ 
-^                                  ^  Application of other organic fertilizers in Gg N                                                                                                            |||||||||||||+^                                  ^  Application of other organic fertilizers in kt N                                                                                                            |||||||||||||
 |                                  ^  1990                                              ^  1995  ^  2000  ^  2005    2010    2015    2016    2017    2018    2019    2020    2021    2022   ^ |                                  ^  1990                                              ^  1995  ^  2000  ^  2005    2010    2015    2016    2017    2018    2019    2020    2021    2022   ^
 | Residues, digested energy crops  |                                               0.05 |   0.59 |   5.12 |   43.36 |  158.69 |  288.92 |  287.59 |  283.07 |  279.15 |  279.38 |  285.56 |  280.37 |  280.37 | | Residues, digested energy crops  |                                               0.05 |   0.59 |   5.12 |   43.36 |  158.69 |  288.92 |  287.59 |  283.07 |  279.15 |  279.38 |  285.56 |  280.37 |  280.37 |
Line 232: Line 238:
  
 ==== Emission factors ==== ==== Emission factors ====
 +
 For NH<sub>3</sub> the emission factors for untreated cattle slurry were adopted for residues from digested energy crops and residues from waste. The emission factors for cattle solid manure were adopted for compost from biowaste and compost from green waste, see Vos et al. (2024), Chapters 5.2.1.2 and 5.2.2.2. For imported manures the corresponding emission factors of the same type of domestic manure were used.  For NH<sub>3</sub> the emission factors for untreated cattle slurry were adopted for residues from digested energy crops and residues from waste. The emission factors for cattle solid manure were adopted for compost from biowaste and compost from green waste, see Vos et al. (2024), Chapters 5.2.1.2 and 5.2.2.2. For imported manures the corresponding emission factors of the same type of domestic manure were used. 
 +
 As the NO<sub>x</sub> method for fertilizer application is used for the calculation of NO<sub>x</sub> emissions from the application of residues, the emission factor for fertilizer application was used (see Table 3).  As the NO<sub>x</sub> method for fertilizer application is used for the calculation of NO<sub>x</sub> emissions from the application of residues, the emission factor for fertilizer application was used (see Table 3). 
-Table 10 shows the implied emission factors for NH<sub>3</sub> emissions from application of other organic fertilizers.  
  
-//Table 10: IEF for NH<sub>3</sub>-N emissions from application of other organic fertilizers//+__Table 11: IEF for NH<sub>3</sub>-N emissions from application of other organic fertilizers__
 ^                                  ^  IEF in kg NH3-N per kg N of other organic fertilizers                                                                                                  ||||||||||||| ^                                  ^  IEF in kg NH3-N per kg N of other organic fertilizers                                                                                                  |||||||||||||
 |                                  ^  1990                                                    1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^ |                                  ^  1990                                                    1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^
Line 250: Line 257:
 ==== Recalculations ==== ==== Recalculations ====
  
-Table 11 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions. For all years the total emissions of NH<sub>3</sub> and NO<sub>x</sub> from application of other organic fertilizers are significantly higher than those of last year’s submission. The main reason for that is, that the emissions from application of residues from digested waste, compost of biowaste and compost of green waste are reported for the first time in the agriculture sector (see [[sector:agriculture:start|main page of the agricultural sector]], list of recalculation **reasons, No 2**, and Vos et al. (2024), Chapter 1.3) +For all yearstotal NH<sub>3</sub> and NO<sub>x</sub> emissions from application of other organic fertilizers are higher than those of last year’s submission as the emissions from application of residues from digested waste, compost of biowaste and compost of green waste are reported for the first time in the agriculture sector (see [[sector:agriculture:start|main page of the agricultural sector]], list of recalculation **reasons, No 2**, and Vos et al. (2024), Chapter 1.3) 
  
-__Table 11:REC-4: Revised NH<sub>3</sub> and NO<sub>x</sub> from application of other organic fertilizers, in kilotonnes__+__Table 12:REC-4: Revised NH<sub>3</sub> and NO<sub>x</sub> from application of other organic fertilizers, in kilotonnes__
 |                      ^  1990    1995    2000    2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^ |                      ^  1990    1995    2000    2013  ^  2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^
 | **Ammonia**          |                                |        |        |        |        |        |        |        |        |        | | **Ammonia**          |                                |        |        |        |        |        |        |        |        |        |
Line 270: Line 277:
 The calculation of NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from N excretions on pasture is described in Vos et al. (2024), Chapters 5.2.1.1 and 5.2.2.1.  The calculation of NH<sub>3</sub> and NO<sub>x</sub> (NO) emissions from N excretions on pasture is described in Vos et al. (2024), Chapters 5.2.1.1 and 5.2.2.1. 
 ==== Activity data ==== ==== Activity data ====
-Activity data for NH<sub>3</sub> emissions during grazing is the amount of TAN excreted on pasture while for NO<sub>x</sub> emissions it is the amount of N excreted on pasture.  
  
-Table 12 shows the share of N excretions on pasture. The TAN excretions are derived by multiplying the share of N excretion on pastures with the N excretions and TAN contents provided in 3.B, Table 2+Activity data for NH<sub>3</sub> emissions during grazing is the amount of TAN excreted on pasture, while for NO<sub>x</sub> emissions it is the amount of N excreted
  
-// Table 12: Share of N excretions on pasture // +The TAN excretions are derived by multiplying the share of N excretion on pastures with the N excretions and TAN contents provided in 3.B, Table 2.  
-^               ^  N excretions on pasture in % of total N excreted                                                                                                   ||||||||||||| + 
-|               1990                                                1995   | 2000   | 2005   | 2010   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   | +__Table 13: Shares of N excretions on pasturein [%]__ 
-Dairy cows    | 20.3                                                | 15.6   | 12.7   11.4   | 10.0   | 8.6    | 8.3    | 8.0    | 7.6    | 7.4    | 7.4    | 7.4    7.4    +|               ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^ 
-Other cattle  | 15.1                                                | 17.3   | 18.9   | 19.0   | 19.6   | 20.5   | 20.7   | 20.9   | 21.2   | 21.4   | 21.5   | 21.4   21.4   +Dairy cows    |   20.3 |   15.6 |   12.7   11.4 |   10.0 |    8.6 |    8.3 |    8.0 |    7.6 |    7.4 |    7.4 |    7.4    7.4 | 
-Sheep         | 55.1                                                | 55.5   | 55.1   | 55.4   | 54.8   | 55.4   | 55.4   | 55.4   | 55.6   | 55.5   | 55.4   | 55.5   55.8   +Other cattle   15.1 |   17.3 |   18.9 |   19.0 |   19.6 |   20.5 |   20.7 |   20.9 |   21.2 |   21.4 |   21.5 |   21.4   21.4 | 
-Goats         | 34.2                                                | 34.2   34.2   | 34.2   | 34.2   | 34.2   | 34.2   | 34.2   | 34.2   | 34.2   | 34.2   | 34.2   | 34.2   +Sheep           55.1 |   55.5 |   55.1 |   55.4 |   54.8 |   55.4 |   55.4 |   55.4 |   55.6 |   55.5 |   55.4 |   55.5   55.8 | 
-Horses        | 20.5                                                | 20.5   | 20.5   | 20.5   | 20.5   | 20.5   | 20.5   | 20.5   | 20.5   | 20.5   | 20.5   | 20.5   | 20.5   +Goats           34.2 |   34.2   34.2 |   34.2 |   34.2 |   34.2 |   34.2 |   34.2 |   34.2 |   34.2 |   34.2 |   34.2 |   34.2 | 
-Laying hens   | 0.1                                                 | 0.1    | 0.5    | 1.0    | 1.7    | 2.3    | 2.4    | 2.3    | 2.5    | 2.6    | 2.8    | 2.8    | 3.0    +Horses        |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 |   20.5 | 
-Deer          | 100.0                                               | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  | 100.0  +Laying hens      0.1 |    0.1 |    0.5 |    1.0 |    1.7 |    2.3 |    2.4 |    2.3 |    2.5 |    2.6 |    2.8 |    2.8 |    3.0 | 
-Ostriches     80.0                                                | 80.0   | 80.0   | 80.0   80.0   | 80.0   | 80.0   | 80.0   | 80.0   | 80.0   | 80.0   | 80.0   | 80.0   |+Deer          |  100.0 |  100.0 |  100.0 |  100.0 |  100.0 |  100.0 |  100.0 |  100.0 |  100.0 |  100.0 |  100.0 |  100.0 |  100.0 | 
 +^ Ostrich         80.0 |   80.0 |   80.0 |   80.0   80.0 |   80.0 |   80.0 |   80.0 |   80.0 |   80.0 |   80.0 |   80.0 |   80.0 |
 ==== Methodology ==== ==== Methodology ====
 NH<sub>3</sub> emissions from grazing are calculated by multiplying the respective animal population (3.B, Table 1) with corresponding N excretions and relative TAN contents (3.B, Table 2) and the fraction of N excreted on pasture (Table 9). The result is multiplied with the animal specific emission factor (Table 10). NO emissions are calculated the same way with the exception that the emission factor is related to N excreted instead of TAN. NH<sub>3</sub> emissions from grazing are calculated by multiplying the respective animal population (3.B, Table 1) with corresponding N excretions and relative TAN contents (3.B, Table 2) and the fraction of N excreted on pasture (Table 9). The result is multiplied with the animal specific emission factor (Table 10). NO emissions are calculated the same way with the exception that the emission factor is related to N excreted instead of TAN.
  
 ==== Emission Factors ==== ==== Emission Factors ====
 +
 The emission factors for NH<sub>3</sub> are taken from EMEP (2019)-3B-31, Table 3.9. They relate to the amount of TAN excreted on pasture. For laying hens, deer and ostriches there are no emission factors given in this table. Germany uses for laying hens an emission factor of 0.35 kg NH<sub>3</sub>-N per kg TAN excreted, based on an expert judgement from KTBL (see Vos et al. 2024, Chapter 5.2.1.1). The same EF is used by UK. It was also used for ostriches. For deer the emission factor of sheep was adopted. The emission factors for NH<sub>3</sub> are taken from EMEP (2019)-3B-31, Table 3.9. They relate to the amount of TAN excreted on pasture. For laying hens, deer and ostriches there are no emission factors given in this table. Germany uses for laying hens an emission factor of 0.35 kg NH<sub>3</sub>-N per kg TAN excreted, based on an expert judgement from KTBL (see Vos et al. 2024, Chapter 5.2.1.1). The same EF is used by UK. It was also used for ostriches. For deer the emission factor of sheep was adopted.
  
Line 294: Line 302:
  
  
-//Table 13: Emission factors for emissions of NH<sub>3</sub> and NO from grazing// +__Table 14: Emission factors for emissions of NH<sub>3</sub> and NO from grazing__
-^  Emission factors                                      ^^+
 | Dairy cows         | 0.14 kg NH3-N per kg TAN excreted  | | Dairy cows         | 0.14 kg NH3-N per kg TAN excreted  |
 | Other cattle       | 0.14 kg NH3-N per kg TAN excreted  | | Other cattle       | 0.14 kg NH3-N per kg TAN excreted  |
Line 310: Line 317:
  
 ==== Recalculations ==== ==== Recalculations ====
-Table 14 shows the effects of recalculations on NH<sub>3</sub> and NO<sub>x</sub> emissions.  
  
 +For all years, totals of NH<sub>3</sub> and NO<sub>x</sub> emissions from grazing are slightly higher than those of last year’s submission. 
  
-For all years the total emissions of NH<sub>3</sub> and NO<sub>x</sub> from grazing are slightly higher than those of last year’s submission. The main reason for that is the introduction of the new animal categories ostrich and deer. It is assumed that rabbits and fur bearing animals do not have access to pasture (see main page of the agricultural sector, list of recalculations, No. 1). Further details on recalculations are described in Vos et al. (2024), Chapter 1.3. +The main reason for that is the introduction of the new animal categories "ostriches" and "deer". It is assumed that rabbits and fur bearing animals do not have access to pasture (see main page of the agricultural sector, list of recalculations, No. 1). Further details on recalculations are described in Vos et al. (2024), Chapter 1.3. 
  
-__Table 14: REC-5: Revised NH<sub>3</sub> and NO<sub>x</sub> emissions, in kilotonnes__+__Table 15: REC-5: Revised NH<sub>3</sub> and NO<sub>x</sub> emissions, in kilotonnes__
 |                      ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^ |                      ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^
 | **Ammonia**          |        |        |        |        |        |        |        |        |        |        |        |        |        | | **Ammonia**          |        |        |        |        |        |        |        |        |        |        |        |        |        |
Line 335: Line 342:
  
 ==== Activity data ==== ==== Activity data ====
 +
 The activity data is the total area of agricultural land (arable land, grassland and horticultural land). This data is provided by official statistics.  The activity data is the total area of agricultural land (arable land, grassland and horticultural land). This data is provided by official statistics. 
  
-//Table 15AD for the estimation of TSP,  PM<sub>10</sub>  and PM<sub>2.5</sub> emissions from soils//^ +__Table 16Arable land and grasslandin  [1000*ha]__ 
-^  Arable land and grassland in 1000*ha                                                                                                              ||||||||||||| +^  Arable land and grassland in 1000*ha                                                                                                                          ||||||||||||| 
-1990                                   | 1995    2000    2005    2010    2015    2016    2017    2018    2019    2020    2021    2022    | +^  1990                                  ^  1995    ^  2000    ^  2005    ^  2010    ^  2015    ^  2016    ^  2017    ^  2018    ^  2019    ^  2020    ^  2021    ^  2022    ^ 
-| 16,597                                 | 15,395  | 15,595  | 15,674  | 15,855  | 15,841  | 15,789  | 15,781  | 15,701  | 15,694  | 15,577  | 15,510  | 15,465  |+ 16.597                                 15.395  |  15.595  |  15.674  |  15.855  |  15.841  |  15.789  |  15.781  |  15.701  |  15.694  |  15.577  |  15.510  |  15.465  |
 ==== Methodology ==== ==== Methodology ====
 The Tier 2 methodology used is described in EMEP (2019)-3D-17.  The Tier 2 methodology used is described in EMEP (2019)-3D-17. 
  
 ==== Emission factors ==== ==== Emission factors ====
-Emission factors given in EMEP (2019)-3D-18, Tables 3.5 and 3.7 are used with the exception of „Harvesting“ PM<sub>10</sub>-factors for Wheat, Rye, Barley and Oat which were taken from the Danish IIR. These Guidebook-EFs are obviously too high by a factor of 10 and were corrected in the Danish IIR. The missing default-EFs for „other arable“ in the 2019 EMEP/EEA Guidebook were replaced with the average of the EFs of wheat, rye, barley and oat, as it was done in the Danish IIR. The PM<sub>10</sub> EFs were also used as TSP EFs. The Guidebook does not indicate whether EFs have considered the condensable component (with or without). For details on country specific numbers of agricultural crop operations see Vos et al. (2024), Chapter 5.2.4. Table 12 shows the implied emission factors for PM emissions from soils. 
  
-//Table 16Emission factors for PM emissions from agricultural soils// +Emission factors given in EMEP (2019)-3D-18, Tables 3.5 and 3.7 are used with the exception of „Harvesting“ PM<sub>10</sub>-factors for Wheat, Rye, Barley and Oat which were taken from the Danish IIR. These Guidebook-EFs are obviously too high by a factor of 10 and were corrected in the Danish IIR.  
-^        ^  IEF in kg ha<sup>-1</sup>                                                                                      ||||||||||||| + 
-       1990             | 1995  2000  2005  2010  2015  2016  2017  2018  2019  2020  2021  2022  | +The missing default-EFs for „other arable“ in the 2019 EMEP/EEA Guidebook were replaced with the average of the EFs of wheat, rye, barley and oat, as it was done in the Danish IIR. The PM<sub>10</sub> EFs were also used as TSP EFs. The Guidebook does not indicate whether EFs have considered the condensable component (with or without). For details on country specific numbers of agricultural crop operations see Vos et al. (2024), Chapter 5.2.4.  
-TSP    | 1.41             | 1.41  | 1.42  | 1.40  | 1.39  | 1.38  | 1.37  | 1.37  | 1.36  | 1.36  | 1.35  | 1.35  | 1.36  + 
-| PM10   | 1.41             | 1.41  | 1.42  | 1.40  | 1.39  | 1.38  | 1.37  | 1.37  | 1.36  | 1.36  | 1.35  | 1.35  | 1.36  +__Table 17Implied emission factors for PM emissions from agricultural soilsin kg ha<sup>-1</sup>__ 
-| PM2.5  | 0.11             | 0.11  | 0.11  | 0.11  | 0.11  | 0.11  | 0.11  | 0.11  | 0.11  | 0.11  | 0.11  | 0.11  | 0.11  |+                  ^  1990                       ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^ 
 +TSP               | 1.41                        | 1.41   | 1.42   | 1.40   | 1.39   | 1.38   | 1.37   | 1.37   | 1.36   | 1.36   | 1.35   | 1.35   | 1.36   
 +^ PM<sub>10</sub>   | 1.41                        | 1.41   | 1.42   | 1.40   | 1.39   | 1.38   | 1.37   | 1.37   | 1.36   | 1.36   | 1.35   | 1.35   | 1.36   
 +^ PM<sub>2.5</sub>  | 0.11                        | 0.11   | 0.11   | 0.11   | 0.11   | 0.11   | 0.11   | 0.11   | 0.11   | 0.11   | 0.11   | 0.11   | 0.11   |
  
  
Line 361: Line 371:
 ==== Recalculations ==== ==== Recalculations ====
  
-Table 17 shows the effects of recalculations on particulate matter emissions. The only difference is in the year 2021, where the emissions are slightly higher than in the submission 2023. The reason for this is the correction of area data in one federal state.Further details on recalculations are described in Vos et al. (2024), Chapter 1.3. +The only difference occurs for 2021, where the emissions are slightly higher than in the previous submission due to the correction of area data in one federal state. 
 +Further details on recalculations are described in Vos et al. (2024), Chapter 1.3. 
  
-__Table 17: REC-6: Revised particle emissions (TSP, PM<sub>10</sub> & PM<sub>2.5</sub>), in kilotonnes__ +__Table 18: REC-6: Revised particle emissions (TSP, PM<sub>10</sub> & PM<sub>2.5</sub>), in kilotonnes__ 
-                                                         | SUB   1990   | 1995   | 2000   | 2005   | 2010   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   | 2021   | 2022   | +                                     ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^ 
-| TSP                                                      2024  | 23.45  | 21.67  22.13  22.01  | 22.02  | 21.81  | 21.65  | 21.61  | 21.38  | 21.32  | 21.04  | 21.00  | 21.02  +**TOTAL SUSPENDED PARTICLES (TSP)**                                                                                                          |||||||||||||| 
-TSP                                                      | 2023  23.45  21.67  22.13  22.01  22.02  | 21.81  | 21.65  21.61  21.38  21.32  21.04  20.97  |        | +^ current submission                   |  23.45 |  21.67  22.13  22.01 |  22.02 |  21.81 |  21.65 |  21.61 |  21.38 |  21.32 |  21.04 |  21.00 |  21.02 | 
-|                                                 relative change |0.00   0.00   0.00   0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   0.00   0.03   |        | +^ previous submission                  |  23.45  21.67  22.13  22.01  22.02 |  21.81 |  21.65  21.61  21.38  21.32  21.04  20.97 |        | 
-|                                             absolute change [%] |0.00   0.00   0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   0.00   0.00   | 0.13   |        | +^ absolute change                        0.00   0.00   0.00   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00   0.00   0.03 |        | 
-PM10                                                     2024  | 23.45  | 21.67  | 22.13  | 22.01  | 22.02  | 21.81  21.65  21.61  21.38  | 21.32  | 21.04  21.00  21.02  +^ relative change [%]                    0.00   0.00   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00   0.00   0.00 |   0.13 |        | 
-PM10                                                     | 2023  23.45  | 21.67  | 22.13  22.01  22.02  21.81  | 21.65  | 21.61  | 21.38  | 21.32  | 21.04  | 20.97  |        | +**PM<sub>10</sub>**                                       |        |        |        |        |        |        |        |        |        |        | 
-|                                                 relative change |0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   0.03   |        | +^ current submission                   |  23.45 |  21.67 |  22.13 |  22.01 |  22.02 |  21.81  21.65  21.61  21.38 |  21.32 |  21.04  21.00  21.02 | 
-|                                             absolute change [%] |0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   0.00   0.00   | 0.00   | 0.00   | 0.00   | 0.13   |        | +^ previous submission                  |  23.45 |  21.67 |  22.13  22.01  22.02  21.81 |  21.65 |  21.61 |  21.38 |  21.32 |  21.04 |  20.97 |        | 
-PM2.5                                                    2024  | 1.81   | 1.70   | 1.77   1.77   1.77   | 1.74   | 1.72   | 1.72   | 1.69   | 1.68   | 1.65   1.65   1.66   +^ absolute change                        0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00   0.03 |        | 
-PM2.5                                                    | 2023  | 1.81   1.70   1.77   | 1.77   | 1.77   1.74   1.72   1.72   | 1.69   | 1.68   1.65   1.64   |        | +^ relative change [%]                    0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00   0.00   0.00 |   0.00 |   0.00 |   0.00 |   0.13 |        | 
-|                                                 relative change |0.00   0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   0.00   0.00   |        | +**PM<sub>2.5</sub>**                                      |        |        |        |        |        |        |        |        |        |        | 
-|                                             absolute change [%] |0.00   0.00   | 0.00   | 0.00   0.00   0.00   0.00   | 0.00   | 0.00   0.00   0.00   0.16   |        |+^ current submission                     1.81 |   1.70 |   1.77   1.77   1.77 |   1.74 |   1.72 |   1.72 |   1.69 |   1.68 |   1.65   1.65   1.66 | 
 +^ previous submission                    1.81   1.70   1.77 |   1.77 |   1.77   1.74   1.72   1.72 |   1.69 |   1.68   1.65   1.64 |        | 
 +^ absolute change                        0.00   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00   0.00   0.00 |        | 
 +^ relative change [%]                    0.00   0.00 |   0.00 |   0.00   0.00   0.00   0.00 |   0.00 |   0.00   0.00   0.00   0.16 |        |
  
 ==== Planned improvements ==== ==== Planned improvements ====
Line 386: Line 400:
  
 ==== Activity data ==== ==== Activity data ====
-The activity data is the total area of arable land and grassland. This data is provided by official statistics. 
  
-// Table 18: AD for the estimation of NMVOC emissions from crop production// +The __total area of arable land and grassland__ applied as activity data is provided by official statistics. 
-^  Arable land and grassland in 1000*ha                                                                                                              ^|||||||||||| + 
-1990                                   | 1995    2000    2005    2010    2015    2016    2017    2018    2019    2020    2021    2022    | +__Table 19: Arable land and grasslandin [1000 ha]__ 
-| 16,506                                 | 15,312  | 15,498  | 15,561  | 15,734  | 15,719  | 15,662  | 15,647  | 15,570  | 15,563  | 15,447  | 15,376  | 15,336  |+ 1990    ^  1995   ^  2000   ^  2005   ^  2010   ^  2015   ^  2016   ^  2017   ^  2018   ^  2019   ^  2020   ^  2021   ^  2022   ^ 
 +| 16.506  | 15.312  | 15.498  | 15.561  | 15.734  | 15.719  | 15.662  | 15.647  | 15.570  | 15.563  | 15.447  | 15.376  | 15.336  |
  
 ==== Methodology ==== ==== Methodology ====
Line 397: Line 411:
  
 ==== Emission Factors ==== ==== Emission Factors ====
-The emission factors for wheat, rye, rape and grass (15°C) given in EMEP (2019)-3D-16, Table 3.3 were used. For all grassland areas the grass (15°C) EF is used, for all other crops except rye and rape the EF of wheat is used. Table 19 shows the implied emission factors for NMVOC emissions from crop production. The implied emission factor is defined as ratio of the total NMVOC emissions from cultivated crops to the total area given by activity data. 
  
-__Table 19: IEF for NMVOC emissions from crop production, in [kg ha-1]__+The emission factors for wheat, rye, rape and grass (15°C) given in EMEP (2019)-3D-16, Table 3.3 were used. For all grassland areas the grass (15°C) EF is used, for all other crops except rye and rape the EF of wheat is used.  
 + 
 +The implied emission factors provided in thr following table are defined as ratio of the total NMVOC emissions from cultivated crops to the total area given by activity data. 
 + 
 +__Table 20: IEF for NMVOC emissions from crop production, in [kg ha-1]__
 ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^ ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^
 |  0.47  |  0.53  |  0.57  |  0.59  |  0.61  |  0.63  |  0.62  |  0.62  |  0.50  |  0.55  |  0.59  |  0.61  |  0.58  | |  0.47  |  0.53  |  0.57  |  0.59  |  0.61  |  0.63  |  0.62  |  0.62  |  0.50  |  0.55  |  0.59  |  0.61  |  0.58  |
Line 406: Line 423:
  
 ==== Recalculations ==== ==== Recalculations ====
-Table 20 shows the effects of recalculations on NMVOC emissions. The only change with respect to last year’s submission is in 2021, where emissions are slightly higher in the present submission. The reason for this is the correction of area data in one federal state. Further details on recalculations are described in Vos et al. (2024), Chapter 1.3.  
  
-__Table 20: REC-7: Revised NMVOC emissions, in kilotonnes__+The only change with respect to last year’s submission occurs for 2021, where emissions are slightly higher in the present submission due to the correction of area data in one federal state. Further details on recalculations are described in Vos et al. (2024), Chapter 1.3.  
 + 
 +__Table 21: REC-7: Revised NMVOC emissions, in kilotonnes__
 |                                                1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^ |                                                1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^  2022  ^
 ^ current submission                            |   7.69 |   8.19 |   8.79 |   9.17 |   9.53 |   9.91 |   9.69 |   9.74 |   7.82 |   8.56 |   9.16 |   9.44 |   8.91 | ^ current submission                            |   7.69 |   8.19 |   8.79 |   9.17 |   9.53 |   9.91 |   9.69 |   9.74 |   7.82 |   8.56 |   9.16 |   9.44 |   8.91 |
Line 415: Line 433:
 ^ relative change [%]                             0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.05 |        | ^ relative change [%]                             0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.00 |   0.05 |        |
  
-<WRAP center round info 60%>+<WRAP center round info 65%>
 For **pollutant-specific information on recalculated emission estimates for Base Year and 2021**, please see the pollutant specific recalculation tables following [[general:recalculations:start|chapter 8.1 - Recalculations]]. For **pollutant-specific information on recalculated emission estimates for Base Year and 2021**, please see the pollutant specific recalculation tables following [[general:recalculations:start|chapter 8.1 - Recalculations]].
 </WRAP> </WRAP>