meta data for this page
Differences
This shows you the differences between two versions of the page.
appendices:appendix5_additional_information [2023/03/15 15:01] – [5.1 Introduction] kotzulla | appendices:appendix5_additional_information [2024/11/06 13:50] (current) – external edit 127.0.0.1 | ||
---|---|---|---|
Line 7: | Line 7: | ||
The first recommended dataset is the air-pollution (AP) dataset of the Emission Database for Global Atmospheric Research (EDGAR) of the JRC (Crippa et al., 2019)[(CrippaMetal2019)], | The first recommended dataset is the air-pollution (AP) dataset of the Emission Database for Global Atmospheric Research (EDGAR) of the JRC (Crippa et al., 2019)[(CrippaMetal2019)], | ||
- | The most important, modern dataset used in the verification work is available via the Copernicus Atmospheric Monitoring Service, Atmospheric Datastore (CAMS-ADS), which are the CAMS global reanalysis (EAC4) monthly averaged field (ECMWF, 2022)[(ECMWF2022)]. Details of these dataset are detailed in (Inness et al., 2019)[(InnessAetal2019)]. These data provide monthly averaged fields for standard air-pollutants such as NO₂, or particulate matter. Data for more insight into the distribution of heavy metal species are, however, missing. | + | The most important, modern dataset used in the verification work is available via the Copernicus Atmospheric Monitoring Service, Atmospheric Datastore (CAMS-ADS), which are the CAMS global reanalysis (EAC4) monthly averaged field (ECMWF, 2022)[(ECMWF2022)]. Details of these dataset are detailed in (Inness et al., 2019)[(InnessAetal2019)]. These data provide monthly averaged fields for standard air-pollutants such as NO< |
Time series data from all the four datasets are compared to the reported national inventory data time series on the basis of the national totals for Germany. This is done in a visual-quantitative way using plots of the time series data of the national totals, as well as scatter plots between the reported national totals and each of the four sets of data. In addition a quantitative analysis in form of correlation is carried out using standard mathematical similarity operators such as the Pearson and Spearman-Rank correlations, | Time series data from all the four datasets are compared to the reported national inventory data time series on the basis of the national totals for Germany. This is done in a visual-quantitative way using plots of the time series data of the national totals, as well as scatter plots between the reported national totals and each of the four sets of data. In addition a quantitative analysis in form of correlation is carried out using standard mathematical similarity operators such as the Pearson and Spearman-Rank correlations, | ||
Line 31: | Line 31: | ||
====5.2.2 The CAMS EAC4 data==== | ====5.2.2 The CAMS EAC4 data==== | ||
- | The CAMS global reanalysis data products are available from the ECMWF Atmospheric Composition Reanalysis (EAC4) process. They are available as either daily or monthly (ECMWF, 2022)[(ECMWF2022)] data products in either single, or multi-level variants. More detail on the data products and their generation can be found in (Inness et al., 2019)[(InnessAetal2019)]. For the verification work presented here the 0.75°x0.75° monthly averaged fields data product was used, which is available for the time-period from 2003 till 06/2021. Therefore, we used the time-period from 2003 until 2020 for comparison to the German inventory data. The update frequency of this monthly dataset is every six months, carried out by the ECMWF. The CAMS monthly dataset offers total column values for the following major air-pollutants (PM10, PM2.5, NO2, SO2 and several species of NMVOC such as HCHO), which were used in the following for a comparison to the national total values for Germany. An example of the monthly data aggregated to the respective year can be seen in {{: | + | The CAMS global reanalysis data products are available from the ECMWF Atmospheric Composition Reanalysis (EAC4) process. They are available as either daily or monthly (ECMWF, 2022)[(ECMWF2022)] data products in either single, or multi-level variants. More detail on the data products and their generation can be found in (Inness et al., 2019)[(InnessAetal2019)]. |
+ | For the verification work presented here the 0.75°x0.75° monthly averaged fields data product was used, which is available for the time-period from 2003 till 06/2021. Therefore, we used the time-period from 2003 until 2020 for comparison to the German inventory data. The update frequency of this monthly dataset is every six months, carried out by the ECMWF. The CAMS monthly dataset offers total column values for the following major air-pollutants (NO< | ||
====5.2.3 The Pollution Release and Transfer Register==== | ====5.2.3 The Pollution Release and Transfer Register==== | ||
Line 148: | Line 149: | ||
[(CrippaMetal2019> | [(CrippaMetal2019> | ||
[(ECMWF2022> | [(ECMWF2022> | ||
- | [(HausmannKetal2021> | + | [(HausmannKetal2021> |
[(InnessAetal2019> | [(InnessAetal2019> | ||
[(PattersonTetal2022> | [(PattersonTetal2022> |