meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:energy:fuel_combustion:small_combustion:mobile_small_combustion:agriculture_and_forestry:agriculture [2021/02/15 15:36] kotzullasector:energy:fuel_combustion:small_combustion:mobile_small_combustion:agriculture_and_forestry:agriculture [2024/02/27 12:14] (current) – [Table] kotzulla
Line 14: Line 14:
 ====Activity data==== ====Activity data====
  
-Subsector-specific consumption data is included in the primary fuel-delivery data are available from NEB line 67: 'Commercial, trade, services and other consumers' (AGEB, 2019) [((bibcite 1))].+Subsector-specific consumption data is included in the primary fuel-delivery data are available from NEB line 67: 'Commercial, trade, services and other consumers' (AGEB, 2022) [(AGEB2022)].
  
 __Table 1: Sources for primary fuel-delivery data__ __Table 1: Sources for primary fuel-delivery data__
Line 20: Line 20:
 || as of 1995 || **AGEB** - National Energy Balance, line 67: 'Gewerbe, Handel, Dienstleistungen u. übrige Verbraucher'  || || as of 1995 || **AGEB** - National Energy Balance, line 67: 'Gewerbe, Handel, Dienstleistungen u. übrige Verbraucher'  ||
  
-Following the deduction of energy inputs for military vehicles as provided in (BAFA, 2019) [((bibcite 2))], the remaining amounts of gasoline and diesel oil are apportioned onto off-road construction vehicles (NFR 1.A.2.g vii) and off-road vehicles in commercial/institutional use (1.A.4. ii) as well as agriculture and forestry (NFR 1.A.4.c ii) based upon annual shares derived from TREMOD-MM (Knörr et al. (2019b)) (cf. [[[ 1-a-4-mobile-combustion | NFR 1.A.4 - mobile ]]]).+Following the deduction of energy inputs for military vehicles as provided in (BAFA, 2022) [(BAFA2022)], the remaining amounts of gasoline and diesel oil are apportioned onto off-road construction vehicles (NFR 1.A.2.g vii) and off-road vehicles in commercial/institutional use (1.A.4. ii) as well as agriculture and forestry (NFR 1.A.4.c ii) based upon annual shares derived from TREMOD-MM (Knörr et al. (2022b[(KNOERR2022b)(cf. NFR 1.A.4 - mobile).
  
 __Table 2: Annual contribution of agricultural vehicles and mobile machinery to the primary diesel<sup>1</sup> fuels delivery data provided in NEB line 67__ __Table 2: Annual contribution of agricultural vehicles and mobile machinery to the primary diesel<sup>1</sup> fuels delivery data provided in NEB line 67__
- **1990**   **1995**   **2000**   **2005**   **2010**   **2011**   **2012**   **2013**   **2014**   **2015**   **2016**   **2017**   **2018**   **2019**  | + 1990   1995   2000   2005   2010   2011   2012   2013   2014   2015   2016   2017   2018   2019  ^  2020  ^  2021  ^ 
-     47,6% |      45,6% |      43,9% |      46,2% |      47,5% |      47,2% |      47,3% |      48,0% |      47,8% |      48,3% |      48,5% |      48,5% |      48,4% |      48,4% | + 47.5% |  45.6% |  43.8% |  46.2% |  47.4% |  47.2% |  47.2% |  48.0% |  47.8% |  48.2% |  48.4% |  48.5% |  48.4% |  48.4% |  48.2% |  48.6% | 
-<sup>1</sup>no gasoline used in agricultural vehicles and mobile machinery+<sup>1</sup> no gasoline used in agricultural vehicles and mobile machinery
  
 __Table 3: Annual mobile fuel consumption in agriculture, in terajoules__ __Table 3: Annual mobile fuel consumption in agriculture, in terajoules__
-|                        **1990**  |  **1995**  |  **2000**  |  **2005**  |  **2010**  |  **2011**  |  **2012**  |  **2013**  |  **2014**  |  **2015**  |  **2016**  |  **2017**  |  **2018**  |  **2019**  | +|                        1990   ^  1995   ^  2000   ^  2005   ^  2010   ^  2011   ^  2012   ^  2013   ^  2014   ^  2015   ^  2016   ^  2017   ^  2018   ^  2019   ^  2020    2021   ^ 
-^ Diesel Oil            |     53.263     44.622     41.696     37.942     42.024     42.864     42.137     44.531     46.259     48.905     51.027     52.561     49.009     49.591 +^ Diesel Oil            |  53,188  44,553  41,633  37,893  41,973  42,813  42,087  44,479  46,205  48,848  50,968  52,500  48,950  49,622 |  50,901 |  51,619 
-^ Biodiesel                      0 |          0 |          0 |      2.424      3.222      2.991      2.974      2.641      2.843      2.675      2.705      2.806      2.849      2.824 +^ Biodiesel                   0 |       0 |       0 |   2,421   3,218   2,987   2,970   2,638   2,839   2,672   2,702   2,803   2,846   2,826 |   4,228 |   3,586 
-| **Ʃ 1.A.4.c ii (i)** ^     53.263     44.622     41.696     40.366     45.246     45.855     45.111     47.172     49.102     51.580     53.732     55.367     51.858     52.415 +| **Ʃ 1.A.4.c ii (i)**   53,188  44,553  41,633  40,315  45,191  45,800  45,057  47,117  49,045  51,520  53,670  55,302  51,795  52,448 ^  55,129 ^  55,205 ^
    
 ==== Emission factors ==== ==== Emission factors ====
  
 The emission factors applied here are of rather different quality: The emission factors applied here are of rather different quality:
-For all **main pollutants**, **carbon monoxide** and **particulate matter**, annual IEF modelled within TREMOD MM [((bibcite 3))] are used, representing the sector's vehicle-fleet composition, the development of mitigation technologies and the effect of fuel-quality legislation.  +For all **main pollutants**, **carbon monoxide** and **particulate matter**, annual IEF modelled within TREMOD MM are used, representing the sector's vehicle-fleet composition, the development of mitigation technologies and the effect of fuel-quality legislation.  
  
-__Table 3: Annual country-specific emission factors<sup>1</sup>, in kg/TJ__ +__Table 4: Annual country-specific emission factors<sup>1</sup>, in kg/TJ__ 
-|                  **1990**   **1995**   **2000**   **2005**   **2010**   **2011**   **2012**   **2013**   **2014**   **2015**   **2016**   **2017**   **2018**  | **2019**  | +|                  1990   1995   2000   2005   2010   2011   2012   2013   2014   2015   2016   2017   2018  ^  2019  ^  2020  ^  2021  ^ 
-^ NH<sub>3</sub>      0,153      0,156      0,159      0,162      0,163      0,164      0,164      0,164      0,164      0,164      0,164      0,164      0,165     0,165 +^ NH<sub>3</sub>   0.15   0.16   0.16   0.16   0.16   0.16   0.16   0.16   0.16   0.16   0.16   0.16   0.16   0.16 |   0.16 |   0.16 
-^ NMVOC                  258 |        232        205 |        165 |        124 |        118 |        112 |        106 |        100       93,8 |       88,6 |       83,8 |       79,1 |      74,8 | +^ NMVOC              258 |    231    205 |    165 |    124 |    118 |    112 |    106 |   99.7   93.8 |   88.6 |   83.8 |   79.1 |   74.|   70.6 |   66.4 
-^ NO<sub>x</sub>        874        886 |        916 |        832 |        682 |        655 |        629 |        605 |        581 |        560 |        541 |        523        506       490 +^ NO<sub>x</sub>    873    886 |    916 |    832 |    682 |    655 |    629 |    605 |    581 |    560 |    541 |    522    505    489 |    471 |    451 
-^ SO<sub>x</sub>       79,6 |       60,5 |       14,0 |       0,37 |       0,37 |       0,37 |       0,37 |       0,37 |       0,37 |       0,37 |       0,37 |       0,37 |       0,37 |      0,37 | +^ SO<sub>x</sub>   79.6 |   60.5 |   14.0 |   0.37 |   0.37 |   0.37 |   0.37 |   0.37 |   0.37 |   0.37 |   0.37 |   0.37 |   0.37 |   0.37 |   0.37 |   0.37 | 
-BC<sup>3</sup>      125,1      109,4       93,1 |       74,7 |       57,4 |       54,8 |       52,4 |       50,1 |       47,4       44,8 |       42,2       39,8 |       37,5 |      35,3 +PM<sup>2</sup>    125 |    109 |   93.1 |   74.7 |   57.4 |   54.8 |   52.4 |   50.1 |   47.5   44.8 |   42.3   39.8 |   37.5 |   35.4 |   33.2 |   30.9 
-PM<sup>2</sup>        229 |        201 |        171 |        134 |       97,1 |       91,5 |       86,2       81,5 |       76,3       71,4       66,9 |       62,7 |       58,6 |      54,9 | +BC<sup>3</sup>    229 |    201 |    171 |    134 |   97.1 |   91.5 |   86.3   81.5 |   76.4   71.5   66.9 |   62.7 |   58.6 |   54.|   51.3 |   47.6 
-^ CO              |        882 |        834 |        779 |        674 |        555 |        536 |        518 |        502        484        468        453 |        441 |        428       416 |+^ CO              |    882 |    834 |    779 |    674 |    555 |    536 |    518 |    500    479    459    441 |    424 |    407 |    391 |    375    359 |
 <sup>1</sup> due to lack of better information: similar EF are applied for fossil and biofuels \\ <sup>1</sup> due to lack of better information: similar EF are applied for fossil and biofuels \\
 <sup>2</sup> EF(PM<sub>2.5</sub>) also applied for PM<sub>10</sub> and TSP (assumption: > 99% of TSP consists of PM<sub>2.5</sub>)\\ <sup>2</sup> EF(PM<sub>2.5</sub>) also applied for PM<sub>10</sub> and TSP (assumption: > 99% of TSP consists of PM<sub>2.5</sub>)\\
-<sup>3</sup> estimated via a f-BCs as provided in [((bibcite 3))], Chapter 1.A.2.g vii, 1.A.4.a ii, b ii, c ii, 1.A.5.b i - Non-road, note to Table 3-1: Tier 1 emission factors for off-road machinery \\+<sup>3</sup> estimated via a f-BCs as provided in [(EMEPEEA2019)], Chapter 1.A.2.g vii, 1.A.4.a ii, b ii, c ii, 1.A.5.b i - Non-road, note to Table 3-1: Tier 1 emission factors for off-road machinery \\
  
-> **NOTE:** With respect to the country-specific emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly.[[footnote]] During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions. [[/footnote]]+> **NOTE:** With respect to the country-specific emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly. During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions.
  
-> For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to [[[ appendix2.3-HM-from-mobile-sources | Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources]]] and [[[ appendix2.4-POPs-from-mobile-sources | Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources ]]].+> For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources.
  
 ===== Recalculations ===== ===== Recalculations =====
  
-Revisions in **activity data** result from slightly adapted EBZ67 shares as well as the implementation of primary activity data from the now finalised NEB 2019.+Revisions in **activity data** result from slightly revised annual shares adapted EBZ 67 shares as well as the implementation of primary activity data from the now finalised NEB 2020.
  
-__Table 5: Revised annual contribution of 1.A.2.g vii to fuel-specific over-all fuel deliveries provided in NEB line 67__ +__Table 5: Revised annual shares of NEB line 67, in %__ 
-                  |  **1990**  |  **1995**  |  **2000**  | **2005**  | **2010**  | **2011**  |  **2012**  |  **2013**  | **2014**  | **2015**  |  **2016**  |  **2017**  |  **2018**  +                      1990   ^  1995   ^  2000   ^  2005   ^  2010   ^  2011   ^  2012   ^  2013   ^  2014   ^  2015   ^  2016   ^  2017   ^  2018   ^  2019    2020   ^ 
-| **diesel fuels**                                                                                                                                                         |||||||||||||| +current submission   |   0,475   0,456 |   0,438   0,462 |   0,474   0,472 |   0,472   0,480 |   0,478 |   0,482   0,484   0,485 |   0,484 |   0,484 |   0,482 
-Submission 2021   |      0,476      0,456 |      0,439     0,462 |     0,475     0,472 |      0,473      0,480 |     0,478 |     0,483      0,485      0,485 |      0,484 | +previous submission   0,476   0,456   0,439   0,462   0,475   0,472   0,473   0,480   0,478   0,483   0,485   0,485   0,484   0,484 |   0,483 
-Submission 2020   |      0,484      0,467      0,468     0,501     0,509     0,506      0,506      0,505     0,503     0,507      0,510      0,511      0,512 +^ absolute change       -0,001  -0,001  -0,001  -0,001  -0,001  -0,001  -0,001  -0,001  -0,001  -0,001  -0,001  -0,001  -0,001 |  -0,001 |  -0,001 
-^ absolute change       -0,008     -0,011     -0,030    -0,038    -0,034    -0,034     -0,033     -0,024    -0,025    -0,025     -0,025     -0,025     -0,028 +^ relative change       -0,14% |  -0,15% |  -0,15% |  -0,13% |  -0,12% |  -0,12% |  -0,12% |  -0,12% |  -0,12% |  -0,12% |  -0,12% |  -0,12% |   -0,1% |  -0,12% |   -0,1% |
-^ relative change       -1,62% |     -2,30% |     -6,33% |    -7,66% |    -6,75% |    -6,65% |     -6,47% |     -4,80% |    -4,98% |    -4,87% |     -5,00% |     -4,97% |     -5,52% |+
  
-__Table 6: Resulting revised activity data, in terajoules__ +__Table 6: Revised activity data, in terajoules__ 
-                                **1990**  |  **1995**  |  **2000**  | **2005**  | **2010**  | **2011**  |  **2012**  |  **2013**  | **2014**  | **2015**  |  **2016**  |  **2017**  |  **2018**  | +                      1990   ^  1995   ^  2000   ^  2005   ^  2010   ^  2011   ^  2012   ^  2013   ^  2014   ^  2015   ^  2016   ^  2017   ^  2018   ^  2019    2020   ^ 
-Submission 2021                    48.078     45.337     44.668    38.177    41.085    42.145     41.684     42.460    44.710    46.075     47.682     48.977 |     45.594 +current submission    53,188  44,553 |  41,633 |  40,315 |  45,191  45,800  45,057  47,117  49,045  51,520  53,670  55,302  51,795  52,448  55,129 
-Submission 2020                    47.301     44.401     42.286    33.615    37.154    38.387     37.932     39.357    41.335    42.516     44.012     45.175     41.976 +previous submission   53,263  44,622  41,696  40,366  45,246  45,855  45,111  47,172  49,102  51,580  53,732  55,367  51,855 |  52,509 |  54,641 
-^ absolute change                       776        937      2.382     4.562     3.931     3.758      3.752      3.104     3.375     3.559      3.670      3.802      3.618 +^ absolute change        -75.7   -68.7   -63.  -51.|   -54.  -54.  -53.  -54.  -56.  -59.  -62.  -64.3 |   -59.  -60.6 |     488 
-^ relative change                     1,64% |      2,11% |      5,63% |    13,57% |    10,58% |     9,79% |      9,89% |      7,89% |     8,16% |     8,37% |      8,34% |      8,42% |      8,62% |+^ relative change       -0.14%  -0.15% |  -0.15% |   -0.1% |   -0.1% |  -0.12% |  -0.12% |  -0.12% |  -0.12% |  -0.12% |  -0.12% |  -0.12% |  -0.12% |  -0.12% |   0.89% | 
 +<WRAP center round info 60%
 +For **pollutant-specific information on recalculated emission estimates reported for Base Year and 2020**, please see the recalculation tables following chapter [[general:recalculations:start8.1 - Recalculations]]. 
 +</WRAP>
  
-As, in contrast, all **emission factors** remain unrevised compared to last year's susbmission, emission estimates for the years as of 2015 change in accordance with the underlying activity data.+===== Planned improvements =====
  
 +Besides a routine revision of the underlying model, no specific improvements are planned. 
  
-For **information on the impacts on emission estimates for Base Year and 2017**, please see the pollutant specific recalculation tables following chapter [[[recalculations | 8.1 - Recalculations]]]. +[(AGEB2022>AGEB, 2022: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; https://ag-energiebilanzen.de/daten-und-fakten/bilanzen-1990-bis-2020/?wpv-jahresbereich-bilanz=2011-2020, (Aufruf: 23.11.2021), Köln & Berlin, 2022)] 
- +[(BAFA2022>BAFA, 2022: Federal Office of Economics and Export Control (Bundesamt für Wirtschaft und Ausfuhrkontrolle, BAFA): Amtliche Mineralöldaten für die Bundesrepublik Deutschland; 
------- +https://www.bafa.de/SharedDocs/Downloads/DE/Energie/Mineraloel/moel_amtliche_daten_2021_12.xlsx;jsessionid=80E1FD32B36918F682608C03FDE79257.1_cid381?__blob=publicationFile&v=5, Eschborn, 2022.)] 
- +[(KNOERR2022b>Knörr et al. (2022b): Knörr, W., Heidt, C., Gores, S., & Bergk, F.: ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Aktualisierung des Modells TREMOD-Mobile Machinery (TREMOD MM) 2022, Heidelberg, 2022.)] 
-[[bibliography]] +[(EMEPEEA2019> EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook – 2019, Copenhagen, 2019.)] 
-: 1 : AGEB, 2019: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: https://ag-energiebilanzen.de/7-0-Bilanzen-1990-2017.html, (Aufruf: 29.11.2019), Köln & Berlin, 2019. +[(KNOERR2009> Knörr et al. (2009): KnörrW.HeldstabJ.& Kasser, F.: Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland; final report; URL: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3937.pdf, FKZ 360 16 023, Heidelberg & Zürich, 2009.)]
-: 2 : BAFA, 2019: Federal Office of Economics and Export Control (Bundesamt für Wirtschaft und Ausfuhrkontrolle, BAFA): Amtliche Mineralöldaten für die Bundesrepublik Deutschland;  +
-URL: https://www.bafa.de/SharedDocs/Downloads/DE/Energie/Mineraloel/moel_amtliche_daten_2017_dezember.html, Eschborn, 2019   +
-: 3 : Knörr et al. (2018b): Knörr, W., Heidt, C., Gores, S., & Bergk, F. (2019b): ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Aktualisierung des Modells TREMOD-Mobile Machinery (TREMOD MM) 2018, Heidelberg, 2019+
-: 4 : EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook – 2019, Copenhagen, 2019. +
-: 5 : Rentz et al., 2008: Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des UmweltbundesamtesFKZ 205 67 444UBA Texte | 01/2008January 2008 - URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer +
-[[/bibliography]]+