meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:energy:fugitive:gas:start [2023/03/06 08:41] – [1.B.2.b.iii - Processing] boettchersector:energy:fugitive:gas:start [2023/03/27 10:59] (current) – [1.B.2.b.ii - Production] boettcher
Line 4: Line 4:
 | 1.B.2.b        |  T2, T3, M              |||||  AS              |||||  CS              ||||| | 1.B.2.b        |  T2, T3, M              |||||  AS              |||||  CS              |||||
  
-^  Key Category  ^  NOx   NMVOC  ^  SO2  ^  NH3  ^  PM2_5  ^  PM10   TSP  ^  BC  ^  CO    PB  ^  Cd  ^  Hg  ^  Diox  ^  PAH  ^  HCB  ^ +^  Key Category  ^  NO<sub>x</sub>   NMVOC  ^  SO<sub>2</sub>  ^  NH<sub>3</sub>  ^  PM<sub>2.5</sub>  ^  PM<sub>10</sub>   TSP  ^  BC  ^  CO    PB  ^  Cd  ^  Hg  ^  Diox  ^  PAH  ^  HCB  ^ 
-| 1.B.2.b        |  -/-  |  -/-    |  -/-  |  -    |  -      |  -     |  -    |  -    -/-  |  -    -    -    -      -    |  -    |+| 1.B.2.b        |  -/-             |  -/-    |  -/-             |  -               |  -                 |  -                |  -    |  -    -/-  |  -    -    -    -      -    |  -    |
  
 . .
Line 20: Line 20:
 The emissions of source category 1.B.2.b.ii consist of emissions related to production. Since 1998, the Federal Association of the Natural gas, Oil and Geothermal Energy Industries (BVEG) has determined the emissions from production and published the relevant data in its statistical report.  The emissions of source category 1.B.2.b.ii consist of emissions related to production. Since 1998, the Federal Association of the Natural gas, Oil and Geothermal Energy Industries (BVEG) has determined the emissions from production and published the relevant data in its statistical report. 
  
-^ activity data                        Unit        ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2020  ^  2021  ^ +__Table 1: Produced quantities of natural gas, in [Billion m<sup>3</sup>]__ 
-produced quantities of natural gas  |  Billion m³  |   15.3 |   19.1 |   20.1 |   18.8 |   12.7 |    8.6 |    5.2 |    5.2 |+^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2020  ^  2021  ^ 
 +|  15.3   19.1   20.1   18.8   12.7   8.6    5.2    5.2   |
  
-Source of emission factor  Substance Unit         ^ Value  ^ + 
-Natural gas production     NMVOC      kg/ 1000 m³   0.002 |+__Table 2: Emission factors for Natural gas production, in [g/ 1000 m<sup>3</sup>]__ 
 +^  Substance  Emission Factor  ^ 
 + NMVOC   
 +|  Mercury   0.0008  |
  
 ===== 1.B.2.b.iii - Processing ===== ===== 1.B.2.b.iii - Processing =====
Line 33: Line 37:
 The natural gas that leaves processing plants is ready for use. The hydrogen sulphide is converted into elementary sulphur and is used primarily by the chemical industry, as a basic raw material. The natural gas that leaves processing plants is ready for use. The hydrogen sulphide is converted into elementary sulphur and is used primarily by the chemical industry, as a basic raw material.
  
-^                                                  Unit  ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2020  ^  2021  ^ +__Table 3: Sulphur production from natural gas production, in [kt]__ 
-Sulphur production from natural gas production  |  kt    |    915 |  1,053 |  1,100 |  1,050 |    832 |    628 |    353 |    382 |+^  1990  ^  1995   ^  2000   ^  2005   ^  2010  ^  2015  ^  2020  ^  2021  ^ 
 +|  915   |  1,053  |  1,100  |  1,050   832    628    353    382   |
  
-For processing of sour gas, data of the BVEG (the former WEG) for the period since 2000 are used. This data is the result of the BVEG members' own measurements and calculations. For calculation of emissions from sour-gas processing, a split factor of 0.4 relative to the activity data is applied. That split factor is based on the BVEG report [BVEG2022] on sour-gas processing.+For processing of sour gas, data of the BVEG (the former WEG) for the period since 2000 are used. This data is the result of the BVEG members' own measurements and calculations. For calculation of emissions from sour-gas processing, a split factor of 0.4 relative to the activity data is applied. That split factor is based on the BVEG report [(BVEG2022)] on sour-gas processing.
  
-^ Source of emission factor  ^  Substance  ^  Unit         ^  Value  ^ +__Table 4: Emission factors for emissions from treatment of natural gas, in [kg/ 1000 m<sup>3</sup>]__ 
-| Treatment of sour gas      |  NMVOC      |  kg/ 1000 m³  | 0.004   +|                  ^  Value  ^ 
-| Treatment of sour gas      |  CO         |  kg/ 1000 m³  | 0.043   + NMVOC           |  0.004  
-| Treatment of sour gas      |  NOx        |  kg1000 m³  | 0.011   + CO              |  0.043  
-| Treatment of sour gas      |  SO2        |  kg1000 m³  | 0.140   |+ NO<sub>x</sub>   0.011  
 + SO<sub>2</sub>   0.140  |
  
  
Line 54: Line 60:
 In pipeline inspection and cleaning, tools known as pipeline inspection gauges ("pigs") are used. In a pipeline system, a pig moves, driven by the gas flow, from a launching station to a receiving station (pig trap). Systems for launching and catching pigs can be either fixed or portable. Small quantities of methane are emitted in both insertion and removal of pigs. In addition, pig traps can develop leaks. Normally, however, such traps are regularly monitored for leaks and repaired as necessary. Not all types of pipelines can be pigged; diameter reductions, isolation valves, bends, etc. in pipelines can block pigs. These emissions have been estimated in the framework of a study carried out by the firm of DBI Gas- und Umwelttechnik GmbH [(GROSSE2019)]. In pipeline inspection and cleaning, tools known as pipeline inspection gauges ("pigs") are used. In a pipeline system, a pig moves, driven by the gas flow, from a launching station to a receiving station (pig trap). Systems for launching and catching pigs can be either fixed or portable. Small quantities of methane are emitted in both insertion and removal of pigs. In addition, pig traps can develop leaks. Normally, however, such traps are regularly monitored for leaks and repaired as necessary. Not all types of pipelines can be pigged; diameter reductions, isolation valves, bends, etc. in pipelines can block pigs. These emissions have been estimated in the framework of a study carried out by the firm of DBI Gas- und Umwelttechnik GmbH [(GROSSE2019)].
  
 +__Table 5: Activity data applied for NFR 1.B.2.b.iv__
 ^                                    Unit        ^  1990    ^  1995    ^  2000    ^  2005    ^  2010    ^  2015    ^  2020    ^  2021    ^ ^                                    Unit        ^  1990    ^  1995    ^  2000    ^  2005    ^  2010    ^  2015    ^  2020    ^  2021    ^
 | Length of transmission pipelines  |  km          |  22,696  |  28,671  |  32,214  |  34,086  |  35,503  |  34,270  |  33,809  |  34,035  | | Length of transmission pipelines  |  km          |  22,696  |  28,671  |  32,214  |  34,086  |  35,503  |  34,270  |  33,809  |  34,035  |
Line 63: Line 70:
 The emission factor for underground natural gas storage was derived via surveys of operators and analysis of statistics on accidents / incidents [(LANGER2012)], and it is valid for porous storage and cavern-storage facilities. The NMVOC split factor have been obtained from the research project [(UBA2022)] described on chapter 6. The emission factor for underground natural gas storage was derived via surveys of operators and analysis of statistics on accidents / incidents [(LANGER2012)], and it is valid for porous storage and cavern-storage facilities. The NMVOC split factor have been obtained from the research project [(UBA2022)] described on chapter 6.
  
-<WRAP center round box 50%> +__Table 6: NMVOC content of natural gas, mean values from [(UBA2022)]__ 
-== Composition of natural gas ==+^  1990    2000    2010    2020   ^ 
 +|  2,57%  |  2,87%  |  3,43%  |  3,50%  |
  
-^  mean value [(UBA2022)]  ^ 1990  ^ 2000 ^ 2010 ^ 2020 ^ 
-| NMVOC                                      | 2,57% | 2,87% | 3,43% | 3,50% | 
-</WRAP> 
  
 ===== 1.B.2.b.v - Distribution ===== ===== 1.B.2.b.v - Distribution =====
Line 74: Line 79:
 The emissions caused by gas distribution have decreased slightly, even though gas throughput has increased considerably and the distribution network has been enlarged considerably with respect to its size in 1990. One important reason for this improvement is that the gas-distribution network has been modernised, especially in eastern Germany. In particular, the share of grey cast-iron lines in the low-pressure network has been reduced, with such lines being supplanted by low-emissions plastic pipelines. Another reason for the reduction is that fugitive losses in distribution have been reduced through a range of technical improvements (tightly sealing fittings such as flanges, valves, pumps, compressors) undertaken in keeping with emissions-control provisions in relevant regulations (TA Luft (1986) and TA Luft (2002)). The emissions caused by gas distribution have decreased slightly, even though gas throughput has increased considerably and the distribution network has been enlarged considerably with respect to its size in 1990. One important reason for this improvement is that the gas-distribution network has been modernised, especially in eastern Germany. In particular, the share of grey cast-iron lines in the low-pressure network has been reduced, with such lines being supplanted by low-emissions plastic pipelines. Another reason for the reduction is that fugitive losses in distribution have been reduced through a range of technical improvements (tightly sealing fittings such as flanges, valves, pumps, compressors) undertaken in keeping with emissions-control provisions in relevant regulations (TA Luft (1986) and TA Luft (2002)).
  
-^                                          Unit  ^  1990     ^  1995    ^  2000    ^  2005    ^  2010    ^  2015   ^  2020    ^  2021    +__Table 7: Length of natural gas distribution network, in [km]__  
-| Distribution network of natural gas      km    |  282,612  |  366,987 |  362,388 |  402,391 |  471,886 |  474,570 |  503,543 |  554,400 |+^  1990      ^  1995     ^  2000     ^  2005     ^  2010     ^  2015     ^  2020     ^  2021     
 +|  282,612   |  366,987  |  362,388  |  402,391  |  471,886  |  474,570  |  503,543  |  554,400  |
  
 **Pipeline network** **Pipeline network**
Line 106: Line 112:
 The activity data is based on own surveys.  The activity data is based on own surveys. 
  
-^ activity data                                                        ^  Unit     ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2020  ^  2021  ^ +__Table 8: Number of gas meters in the residential and institutional / commercial sector, in Millions__  
-| Gas meters in the residential and institutional / commercial sector  |  Million  |  10.3  |  12.7  |  12.8  |  13.3  |  12.9  |  13.0  |  13.1  |  13.1  |+^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2020  ^  2021  ^ 
 +|  10.3  |  12.7  |  12.8  |  13.3  |  12.9  |  13.0  |  13.1  |  13.1  |
  
 The emission factors are country-specific, and they were determined via the research project by DVGW and GWI [(GWI2022)]. They include start-stopp loses at all enduser devices. The study covers methane only. The appropriate NMVOC factor was derived from the publication [(UBA2022)] (refer to chapter 6). The emission factors are country-specific, and they were determined via the research project by DVGW and GWI [(GWI2022)]. They include start-stopp loses at all enduser devices. The study covers methane only. The appropriate NMVOC factor was derived from the publication [(UBA2022)] (refer to chapter 6).
Line 115: Line 122:
 Use of vehicles running on natural gas continues to increase in Germany. Such vehicles are refuelled at CNG fuelling stations connected to the public gas network. In such refuelling, compressors move gas from high-pressure on-site tanks. Some 900 CNG fuelling stations are now in operation nationwide. In keeping with the stringent safety standards applying to refuelling operations and to the tanks themselves, the pertinent emissions are very low. In the main, emissions result via tank pressure tests and emptying processes. Use of vehicles running on natural gas continues to increase in Germany. Such vehicles are refuelled at CNG fuelling stations connected to the public gas network. In such refuelling, compressors move gas from high-pressure on-site tanks. Some 900 CNG fuelling stations are now in operation nationwide. In keeping with the stringent safety standards applying to refuelling operations and to the tanks themselves, the pertinent emissions are very low. In the main, emissions result via tank pressure tests and emptying processes.
  
-^                                         ^  Unit  ^  1990      1995    ^  2000    ^  2005    ^  2010    ^  2015   ^  2020    ^  2021    +__Table 9: Number of natural-gas-powered vehicles__ 
-| Number of natural-gas-powered vehicles  |  No    |  -.-      |  -.-        7,500 |   28,500 |   90,000 |  97,804 |   100,807 |  101,688 |+^  1990  ^  1995   2000   ^  2005    ^  2010    ^  2015    ^  2020     ^  2021     
 +|  -.-   |  -.-    7,500   28,500   90,000  |  97,804   100,807  |  101,688  |
 ===== Recalculations ===== ===== Recalculations =====
  
-Please refer to overarching chapter [[sector:energy:fugitive:start|1.B - Fugitive Emissions from fossil fuels]]+<WRAP center round info 60%> 
 +For more details please refer to the super-ordinate chapter [[sector:energy:fugitive:start|1.B - Fugitive Emissions from fossil fuels]] 
 +</WRAP>
  
 ===== Planned improvements ===== ===== Planned improvements =====
Line 127: Line 137:
 ===== References ===== ===== References =====
  
-[(WEG2008>WEG (2008). Report of the Association of Oil and Gas Producing "Erdgas – Erdöl. Entstehung-Suche-Förderung", Hannover, 34 S. )] +[(WEG2008>WEG (2008). Report of the Association of Oil and Gas Producing "Erdgas – Erdöl. Entstehung-Suche-Förderung", Hannover, 34 S. [[https://web.archive.org/web/20220119003912/https://www.bveg.de/content/download/1990/11317/file/Erdgas%20Erd%C3%B6l%20Entstehung%20Suche%20F%C3%B6rderung.pdf|External Link, PDF]] )]
-[(BVEG2022)>BVEG (2022) Statistischer Jahresbericht 2021 [External Link|https://www.bveg.de/der-verband/publikationen/statistischer-jahresbericht-2021/]] )] +
-[[https://web.archive.org/web/20220119003912/https://www.bveg.de/content/download/1990/11317/file/Erdgas%20Erd%C3%B6l%20Entstehung%20Suche%20F%C3%B6rderung.pdf|External Link, PDF]] )]+
 [(EXXON2014>EXXON (2014). Förderung von Erdgas in Deutschland.)] [(EXXON2014>EXXON (2014). Förderung von Erdgas in Deutschland.)]
 [(ZOELLNER2014>Zöllner, S. (2014). Überführung der Bestands- und Ereignisdaten des DVGW in die Emissionsdatenbank des Umweltbundesamts. )] [(ZOELLNER2014>Zöllner, S. (2014). Überführung der Bestands- und Ereignisdaten des DVGW in die Emissionsdatenbank des Umweltbundesamts. )]
Line 144: Line 152:
 [(UBA2022>Boettcher, C. (2022) Aktualisierung der Emissionsfaktoren für Methan für die Erdgasbereitstellung, published by UBA [[https://www.umweltbundesamt.de/publikationen/aktualisierung-der-emissionsfaktoren-fuer-methan|External Link]] )] [(UBA2022>Boettcher, C. (2022) Aktualisierung der Emissionsfaktoren für Methan für die Erdgasbereitstellung, published by UBA [[https://www.umweltbundesamt.de/publikationen/aktualisierung-der-emissionsfaktoren-fuer-methan|External Link]] )]
 [(GWI2022>Entwicklung der Methanemissionen in der Gasanwendung, published by DVGW and GWI (2022) [[https://www.dvgw.de/themen/forschung-und-innovation/forschungsprojekte/dvgw-forschungsprojekt-megan|External Link]] )] [(GWI2022>Entwicklung der Methanemissionen in der Gasanwendung, published by DVGW and GWI (2022) [[https://www.dvgw.de/themen/forschung-und-innovation/forschungsprojekte/dvgw-forschungsprojekt-megan|External Link]] )]
 +[(BVEG2022>BVEG (2022). Statistischer Jahresbericht 2021 [[https://www.bveg.de/der-verband/publikationen/statistischer-jahresbericht-2021|External Link]] )]