meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:energy:fugitive:oil:start [2022/03/01 09:21] – [Planned improvements] boettchersector:energy:fugitive:oil:start [2023/03/27 11:02] (current) – [1.B.2.a.i - Exploration, production, transport] boettcher
Line 7: Line 7:
 | 1.B.2.a.v      |  T2                  |||||  AS              |||||  CS              ||||| | 1.B.2.a.v      |  T2                  |||||  AS              |||||  CS              |||||
  
-^  Key Category  ^  NOx   NMVOC  ^  SO2  ^  NH3  ^  PM2_5  ^  PM10   TSP  ^  BC  ^  CO    PB  ^  Cd  ^  Hg  ^  Diox  ^  PAH  ^  HCB  ^ +^  Key Category  ^  NO<sub>x</sub>   NMVOC  ^  SO<sub>2</sub>  ^  NH<sub>3</sub>  ^  PM<sub>2.5</sub>  ^  PM<sub>10</sub>   TSP  ^  BC  ^  CO    PB  ^  Cd  ^  Hg  ^  Diox  ^  PAH  ^  HCB  ^ 
-| 1.B.2.a.i      |  -    |  -/-    |  -    |  -    |  -      |  -     |  -    |  -    -    |  -    -    -    -      -    |  -    | +| 1.B.2.a.i      |  -               |  -/-    |  -               |  -               |  -                 |  -                |  -    |  -    -    |  -    -    -    -      -    |  -    | 
-| 1.B.2.a.iv      -/-  |  -/-    |  -/-  |  -    |  -      |  -     |  -    |  -    -/-  |  -    -    -    -      -    |  -    | +| 1.B.2.a.iv      -/-             |  -/-    |  -/-             |  -               |  -                 |  -                |  -    |  -    -/-  |  -    -    -    -      -    |  -    | 
-| 1.B.2.a.v      |  -    |  -/T    |  -    |  -    |  -      |  -     |  -    |  -    -    |  -    -    -    -      -    |  -    |+| 1.B.2.a.v      |  -               |  -/T    |  -               |  -               |  -                 |  -                |  -    |  -    -    |  -    -    -    -      -    |  -    |
  
 . .
Line 23: Line 23:
 Emissions from exploration consist of emissions from activities of drilling companies and other actors in the exploration sector. Gas and oil exploration takes place in Germany. According to the BVEG (former WEG) [(WEG2008)], virtually no fugitive emissions occur in connection with drilling operations, since relevant measurements are regularly carried out at well sites (with use of methane sensors in wellhead-protection structures, ultrasound measurements and annulus manometers) and old / decommissioned wells are backfilled and normally covered with concrete caps.  Emissions from exploration consist of emissions from activities of drilling companies and other actors in the exploration sector. Gas and oil exploration takes place in Germany. According to the BVEG (former WEG) [(WEG2008)], virtually no fugitive emissions occur in connection with drilling operations, since relevant measurements are regularly carried out at well sites (with use of methane sensors in wellhead-protection structures, ultrasound measurements and annulus manometers) and old / decommissioned wells are backfilled and normally covered with concrete caps. 
  
-Activity data            ^ Unit  ^  1990    ^  1995      2000    ^  2005    ^  2010    ^  2015    ^  2019    ^  2020   ^ +__Table 1: Activity data applied for emissions from oil exploration__  
-| number of wells          |  No.  |  12      |  17        15      |  23      |  16      |  18      |  26      |  12     | +                         ^  Unit  ^  1990    ^  1995      2000    ^  2005    ^  2010    ^  2015    ^  2020    ^  2021   ^ 
-| total of drilling meter  |  m    |  50,140  |  109,187  |  41,378  |  63,994  |  51,411  |  32,773  |  43,416  |  6,220  |+| number of wells          |  No.   |  12      |  17        15      |  23      |  16      |  18      |  12      |      | 
 +| total of drilling meter  |  m     |  50,140  |  109,187  |  41,378  |  63,994  |  51,411  |  32,773  |  6,220  |  8,740  |
  
  
 Since pertinent measurements are not available for the individual wells involved, a conservative approach is used whereby VOC emissions for wells are calculated on the basis of the share ratio of VOC = 9 NMVOC : 1 CH4, using the default methane factor of the IPCC Guidelines 2006 [(IPCC2006)]. Since pertinent measurements are not available for the individual wells involved, a conservative approach is used whereby VOC emissions for wells are calculated on the basis of the share ratio of VOC = 9 NMVOC : 1 CH4, using the default methane factor of the IPCC Guidelines 2006 [(IPCC2006)].
  
-^ Source of emission factor  Substance  ^ Unit    ^ Value  ^ +__Table 2: NMVOC emission factor applied for emissions from oil exploration, in [kg/No.]__  
-| exploration                |  NMVOC      kg/No  |  576   |+^  Value  ^ 
 +|  576    |
  
 Emissions from extraction (crude oil) and first treatment of raw materials (petroleum) in the petroleum industry are included in 1.B.2.a.i as well. Because Germany's oil fields are old, oil production in Germany is highly energy-intensive (thermal extraction, operation of pumps to inject water into oil-bearing layers). The first treatment that extracted petroleum (crude oil) undergoes in processing facilities serves the purpose of removing gases, water and salt from the oil. Crude oil in the form present at wellheads contains impurities, gases and water and thus, does not conform to requirements for safe, easy transport in pipelines. No substance transformations take place. Impurities – especially gases (petroleum gas), salts and water – are removed in order to yield crude oil of suitable quality for transport in pipelines. Emissions from extraction (crude oil) and first treatment of raw materials (petroleum) in the petroleum industry are included in 1.B.2.a.i as well. Because Germany's oil fields are old, oil production in Germany is highly energy-intensive (thermal extraction, operation of pumps to inject water into oil-bearing layers). The first treatment that extracted petroleum (crude oil) undergoes in processing facilities serves the purpose of removing gases, water and salt from the oil. Crude oil in the form present at wellheads contains impurities, gases and water and thus, does not conform to requirements for safe, easy transport in pipelines. No substance transformations take place. Impurities – especially gases (petroleum gas), salts and water – are removed in order to yield crude oil of suitable quality for transport in pipelines.
  
-^ Activity Data  ^  Unit  ^  1990  ^  1995  ^  2000  ^  2005  ^  2010  ^  2015  ^  2019  ^  2020  +__Table 3: Annual amounts of oil produced, in [kt]__  
-| oil produced    kt    |  3,606 |  2,959 |  3,123 |  3,573 |  2,516 |  2,414 |  1,927 |  1,907 |+^  1990   ^  1995   ^  2000   ^  2005   ^  2010   ^  2015   ^  2020   ^  2021   
 +|  3,606  |  2,959  |  3,123  |  3,573  |  2,516  |  2,414  |  1,907  |  1,804  |
  
  
 The emissions from production and processing are measured or calculated by the operators, and the pertinent data is published in the annual reports of the Federal association of the natural gas, oil and geothermal energy industries (BVEG) [(BVEG)]. The emission factors are determined from the reported emissions and the activity data. The emissions from production and processing are measured or calculated by the operators, and the pertinent data is published in the annual reports of the Federal association of the natural gas, oil and geothermal energy industries (BVEG) [(BVEG)]. The emission factors are determined from the reported emissions and the activity data.
  
-^ Source of emission factor  ^  Substance  ^  Unit   ^  Value  +__Table 4: NMVOC emission factor applied for emissions from oil production, in [g/m³]__ 
-| Crude oil production       |  NMVOC      |  kg/m³  |  0.015  +^  Substance   ^  Emission Factor   ^ 
 +|  NMVOC       |   79            | 
 +|  Mercury     |  0,001          
 + 
 Transport emissions are tied to activities of logistics companies and of pipeline operators and pipeline networks. After the first treatment, crude oil is transported to refineries. Almost all transport of crude oil takes place via pipelines. Pipelines are stationary and, normally, run underground. In contrast to other types of transport, petroleum transport is not interrupted by handling processes. Transport emissions are tied to activities of logistics companies and of pipeline operators and pipeline networks. After the first treatment, crude oil is transported to refineries. Almost all transport of crude oil takes place via pipelines. Pipelines are stationary and, normally, run underground. In contrast to other types of transport, petroleum transport is not interrupted by handling processes.
  
- +__Table 5: Activity data applied for emissions from oil transportation, in [kt]__  
-activity data                                  unit  ^  1990    1995    2000    2005    2010    2015   ^  2019   ^  2020   ^ +Activity                                ^  1990    1995    2000    2005    2010    2015   ^  2020   ^  2021   ^ 
-| Transport of domestically produced crude oil  |  kt    |   3,660 |   2,940 |   3,123 |   3,572 |   2,516 |   2,414 |   1,927 |   1,907 +| Transport of domestically produced crude oil  |   3,660 |   2,940 |   3,123 |   3,572 |   2,516 |   2,414 |   1,907 |   1,804 
-| Transport of imported crude oil               |  kt    |  84,043 |  86,063 |  89,280 |  97,474 |  93,270 |  91,275 |  85,991 |  83,049 +| Transport of imported crude oil                84,043 |  86,063 |  89,280 |  97,474 |  93,270 |  91,275 |  83,049 |  81,402 
-| Transport via inland-waterway tankers         |  kt    |      89 |      67 |     112 |     176 |       6 |      43 |      47 |      46 |+| Transport via inland-waterway tankers              89 |      67 |     112 |     176 |       6 |      43 |      46 |      64 |
  
  
Line 56: Line 61:
 The emission factor covers the areas of transfer / injection into pipelines at pumping stations, all infrastructure along pipelines (connections, control units, measuring devices), and transfer at refineries, and it has been determined on the basis of conservative assumptions. For imported quantities, only one transfer point (the withdrawal station) is assumed, since the station for input into the pipeline network does not lie on Germany's national territory.  The emission factor covers the areas of transfer / injection into pipelines at pumping stations, all infrastructure along pipelines (connections, control units, measuring devices), and transfer at refineries, and it has been determined on the basis of conservative assumptions. For imported quantities, only one transfer point (the withdrawal station) is assumed, since the station for input into the pipeline network does not lie on Germany's national territory. 
    
- +__Table 6: NMVOC emission factor applied for emissions from oil transportation, in [kg/t]__  
-^ Source of emission factor                      Substance  ^ Unit   ^ Value  ^ +Activity                    ^ Value  ^ 
-| Transports of domestically produced crude oil   NMVOC      kg/t  | 0.13   | +| Transports of domestically produced crude oil  | 0.13   | 
-| Transports of imported crude oil               |  NMVOC      kg/t  | 0.064  | +| Transports of imported crude oil              | 0.064  | 
-| Transports via inland-waterway tankers         |  NMVOC      kg/t  | 0.34   |+| Transports via inland-waterway tankers        | 0.34   |
  
  
Line 73: Line 78:
 Tanks are emptied and cleaned routinely before tank inspections and repairs. In tank cleaning, a distinction is made between crude-oil tanks and product tanks. Because sediments accumulate in crude oil tanks, cleaning these tanks, in comparison to cleaning product tanks, is a considerably more laborious process. The substances in product tanks produce no sediments and thus are cleaned only when the products they contain are changed. In keeping with an assessment of Müller-BBM (2010)[(MBBM2010)], the emission factors for storage of crude oil and of petroleum products may be assumed to take the cleaning processes into account. Tanks are emptied and cleaned routinely before tank inspections and repairs. In tank cleaning, a distinction is made between crude-oil tanks and product tanks. Because sediments accumulate in crude oil tanks, cleaning these tanks, in comparison to cleaning product tanks, is a considerably more laborious process. The substances in product tanks produce no sediments and thus are cleaned only when the products they contain are changed. In keeping with an assessment of Müller-BBM (2010)[(MBBM2010)], the emission factors for storage of crude oil and of petroleum products may be assumed to take the cleaning processes into account.
  
-^ activity data                                                      ^  unit      1990      1995      2000      2005      2010      2015     ^  2019     ^  2020     ^ +__Table 8: Activity data applied for emissions from oil refinement and storage__  
-| Quantity of crude oil refined                                      |  kt        107,058  |  96,475    107,632  |  114,589  |  95,378    93,391   |  87,013   |  83,990   | +^ Activity                                                           ^  unit      1990      1995      2000      2005      2010      2015     ^  2020     ^  2021     ^ 
-| Capacity utilisation in refineries                                  %        |  106      |  92        95        99        81        91       |  85       |  85       | +| Quantity of crude oil refined                                      |  kt        107,058  |  96,475    107,632  |  114,589  |  95,378    93,391   |  83,990   |  84,138   | 
-| Crude-oil-refining capacity in refineries                          |  kt        100,765  |  104,750  |  112,940  |  115,630  |  117,630  |  103,080  |  102,655  |  105,655 +| Capacity utilisation in refineries                                  %        |  106      |  92        95        99        81        91       |  82       |  80       | 
-| Tank-storage capacity in refineries and pipeline terminals          Mill m³  |  27,1      28,4      24,9      24        22,5      22        20,7      20,    | +| Crude-oil-refining capacity in refineries                          |  kt        100,765  |  104,750  |  112,940  |  115,630  |  117,630  |  103,080  |  105,655  |  105,655 
-| Storage capacity of tank-storage facilities outside of refineries  |  Mill m³  |  15,4      15,9      18,1      17        15,9      15,3      15,    |  15,    | +| Tank-storage capacity in refineries and pipeline terminals          Mill m³  |  27,1      28,4      24,9      24        22,5      22        20,7      20,    | 
-| Storage capacity of caverns                                        |  Mill m³  |  26,6      25,3      27,9      27,2      27,2      25,5     |  26,    |  25,5     |+| Storage capacity of tank-storage facilities outside of refineries  |  Mill m³  |  15,4      15,9      18,1      17        15,9      15,3      15,    |  15,    | 
 +| Storage capacity of caverns                                        |  Mill m³  |  26,6      25,3      27,9      27,2      27,2      25,5     |  25,    |  25,5     |
  
 **Processing** **Processing**
Line 98: Line 104:
 {{ :sector:energy:fugitive:oil:raffinerie.jpg?nolink&400|}} {{ :sector:energy:fugitive:oil:raffinerie.jpg?nolink&400|}}
  
-Source of emission factor                                                               ^ Substance  ^ Unit   ^ Value      ^+__Table 9: Emission factors applied for emissions from oil refinement and storage__  
 +Activity                                                               ^ Substance  ^ Unit   ^ Value      ^
 | Fugitive emissions at refineries                                                        |  NMVOC      kg/t  |  0.0072    | | Fugitive emissions at refineries                                                        |  NMVOC      kg/t  |  0.0072    |
 | Fugitive emissions at refineries                                                        |  NOₓ        kg/t  |  0.00602   | | Fugitive emissions at refineries                                                        |  NOₓ        kg/t  |  0.00602   |
Line 122: Line 129:
 In this category, petroleum products that have undergone fractional distillation in refineries are handled and distributed, i.e. processes in which gaseous products are separated out. For this reason, no significant methane emissions are expected. Only in storage of certain petroleum products can small quantities of methane escape.  In this category, petroleum products that have undergone fractional distillation in refineries are handled and distributed, i.e. processes in which gaseous products are separated out. For this reason, no significant methane emissions are expected. Only in storage of certain petroleum products can small quantities of methane escape. 
    
- +__Table 10: Annual activity data for the distribution of oil products__  
-activity data                      ^  Unit  ^  1990    1995    2000    2005    2010    2015   ^  2018   ^  2019   ^ +^ Activity                           ^  Unit  ^  1990    1995    2000    2005    2010    2015   ^  2020   ^  2021   ^ 
-| number of petrol stations          |  No    |  19,317 |  17,957 |  16,324 |  15,187 |  14,744 |  14,531 |  14,459 |  14,449 +| number of petrol stations          |  No    |  19,317 |  17,957 |  16,324 |  15,187 |  14,744 |  14,531 |  14,459 |  14,429 
-| distribution of diesel              kt    |  21,817 |  26,208 |  28,922 |  28,531 |  32,128 |  36,756 |  37,475 |  37,848 +| distribution of diesel              kt    |  21,817 |  26,208 |  28,922 |  28,531 |  32,128 |  36,756 |  35,163 |  34,980 
-| distribution of jet fuel            kt    |   4,584 |   5,455 |   6,939 |   8,049 |   8,465 |   8,550 |  10,239  10,239 +| distribution of jet fuel            kt    |   4,584 |   5,455 |   6,939 |   8,049 |   8,465 |   8,550 |   4,725   6,129 
-| distribution of light heating oil  |  kt    |  31,803 |  34,785 |  27,875 |  25,380 |  21,005 |  16,127 |  13,256 |  15,061 +| distribution of light heating oil  |  kt    |  31,803 |  34,785 |  27,875 |  25,380 |  21,005 |  16,127 |  15,558 |  11,206 
-| distribution of domestic petrol    |  kt    |  31,257 |  30,333 |  28,833 |  23,431 |  19,634 |  18,226 |  17,837 |  17,966 |+| distribution of domestic petrol    |  kt    |  31,257 |  30,333 |  28,833 |  23,431 |  19,634 |  18,226 |  16,218 |  16,428 |
  
  
Line 134: Line 141:
 **Transport** **Transport**
  
-Inland-waterway gasoline tankers retain considerable quantities of gasoline vapours in their tanks after their gasoline has been unloaded. When the ships change loads or spend time in port, their tanks have to be ventilated. With such ships being ventilated on average 277 times per year, the quantity of NMVOC emitted in these operations amounts to 336 650 t [(BAUER2010)]. The highest value in the range is used to calculate the relevant emissions. +Inland-waterway gasoline tankers retain considerable quantities of gasoline vapours in their tanks after their gasoline has been unloaded. When the ships change loads or spend time in port, their tanks have to be ventilated. With such ships being ventilated on average 277 times per year, the quantity of NMVOC emitted in these operations amounts to 336 to 650 t [(BAUER2010)]. The highest value in the range is used to calculate the relevant emissions. 
-About 13 million m³ of gasoline fuel are transported annually in Germany via railway tank cars. Transfer/handling (filling/unloading) and tank losses result in annual emissions of only 1,400 t VOC [(JOAS2004)]. The emissions situation points to the high technical standards that have been attained in railway tank cars and pertinent handling facilities.+ 
 +About 13 million m<sup>3</sup> of gasoline fuel are transported annually in Germany via railway tank cars. Transfer/handling (filling/unloading) and tank losses result in annual emissions of only 1,400 t VOC [(JOAS2004)]. The emissions situation points to the high technical standards that have been attained in railway tank cars and pertinent handling facilities.
  
  
Line 141: Line 149:
  
 Significant quantities of fugitive VOC emissions are released into the environment during transfers from tanker vehicles to storage facilities and during refuelling of vehicles. To determine emissions, a standardised emission factor of 1.4 kg/t is used. This value refers to the saturation concentration for hydrocarbon vapours and thus, corresponds to the maximum possible emissions level in the absence of reduction measures.  Significant quantities of fugitive VOC emissions are released into the environment during transfers from tanker vehicles to storage facilities and during refuelling of vehicles. To determine emissions, a standardised emission factor of 1.4 kg/t is used. This value refers to the saturation concentration for hydrocarbon vapours and thus, corresponds to the maximum possible emissions level in the absence of reduction measures. 
 +
 The immission-control regulations issued in 1992 and 1993 (20th BImSchV [(BimSchV20)]; 21st BImSchV, [(BimSchV21)]) that required filling stations to limit such emissions promoted a range of reduction measures. The relevant reductions affect both the area of gasoline transfer and storage (20th BImSchV) and the area of fuelling of vehicles with gasoline at filling stations (21st BImSchV). The immission-control regulations issued in 1992 and 1993 (20th BImSchV [(BimSchV20)]; 21st BImSchV, [(BimSchV21)]) that required filling stations to limit such emissions promoted a range of reduction measures. The relevant reductions affect both the area of gasoline transfer and storage (20th BImSchV) and the area of fuelling of vehicles with gasoline at filling stations (21st BImSchV).
 The use of required emissions-control equipment, such as vapour-balancing (20th BImSchV) and vapour-recovery (21st BImSchV) systems, along with the use of automatic monitoring systems (via the amendment of the 21st BImSchV on 6 May 2002), have brought about continual reductions of VOC emissions; the relevant high levels of use of such equipment are shown in the table below (Table 151).  The use of required emissions-control equipment, such as vapour-balancing (20th BImSchV) and vapour-recovery (21st BImSchV) systems, along with the use of automatic monitoring systems (via the amendment of the 21st BImSchV on 6 May 2002), have brought about continual reductions of VOC emissions; the relevant high levels of use of such equipment are shown in the table below (Table 151). 
Line 154: Line 163:
  
 In addition, permeation of hydrocarbons occurs in tank hoses. The DIN EN 1360 standard sets a limit of 12 ml / hose meter per day for such permeation. From analysis of measurements, UBA experts have adopted a conservative factor of 10ml/m per day. That factor is used to determine the NMVOC emissions. The calculation is carried out in accordance with the pertinent formula of the University of Stuttgart's Institute for Machine Components [(HAAS2015)]: In addition, permeation of hydrocarbons occurs in tank hoses. The DIN EN 1360 standard sets a limit of 12 ml / hose meter per day for such permeation. From analysis of measurements, UBA experts have adopted a conservative factor of 10ml/m per day. That factor is used to determine the NMVOC emissions. The calculation is carried out in accordance with the pertinent formula of the University of Stuttgart's Institute for Machine Components [(HAAS2015)]:
- 
- 
  
 <WRAP center round box 80%> <WRAP center round box 80%>
Line 166: Line 173:
 Tank interiors are cleaned prior to tank repairs and safety inspections, in connection with product changes and with lease changes. Tank interiors are cleaned prior to tank repairs and safety inspections, in connection with product changes and with lease changes.
 The inventory currently covers cleaning of railway tank cars. The residual amounts remaining in railway car tanks after these have been emptied – normally, between 0 and 30 litres (up to several hundred litres in exceptional cases) – are not normally able to evaporate completely. They thus produce emissions when the insides of tanks are cleaned. The inventory currently covers cleaning of railway tank cars. The residual amounts remaining in railway car tanks after these have been emptied – normally, between 0 and 30 litres (up to several hundred litres in exceptional cases) – are not normally able to evaporate completely. They thus produce emissions when the insides of tanks are cleaned.
 +
 Each year, some 2,500 cleaning operations are carried out on railway tank cars that transport gasoline. The emissions released, via exhaust air, in connection with cleaning tank cars' interiors amount to about 40,000 kg/a VOC (Joas et al., 2004), p. 34. [(JOAS2004)]. Each year, some 2,500 cleaning operations are carried out on railway tank cars that transport gasoline. The emissions released, via exhaust air, in connection with cleaning tank cars' interiors amount to about 40,000 kg/a VOC (Joas et al., 2004), p. 34. [(JOAS2004)].
 +
 Any additional prevention and reduction measures could affect emissions in this category only slightly. At the same time, emissions can be somewhat further reduced from their current levels via a combination of various technical and organizational measures. Emissions during handling – for example, during transfer to railway tank cars – are produced especially by residual amounts of gasoline that remain after tanks have been emptied. Such left-over quantities in tanks can release emissions via manholes the next time the tanks are filled.  A study is thus underway to determine the extent to which "best practice" is being followed at all handling stations, and whether this extent has to be taken into account in emissions determination. In addition, improvements of fill nozzles enhance efficiency in prevention of VOC emissions during refuelling. Any additional prevention and reduction measures could affect emissions in this category only slightly. At the same time, emissions can be somewhat further reduced from their current levels via a combination of various technical and organizational measures. Emissions during handling – for example, during transfer to railway tank cars – are produced especially by residual amounts of gasoline that remain after tanks have been emptied. Such left-over quantities in tanks can release emissions via manholes the next time the tanks are filled.  A study is thus underway to determine the extent to which "best practice" is being followed at all handling stations, and whether this extent has to be taken into account in emissions determination. In addition, improvements of fill nozzles enhance efficiency in prevention of VOC emissions during refuelling.
 +
 Pursuant to the UBA text (Joas et al., 2004), [(JOAS2004)] a total of 1/3 of all relevant transports are carried out with railway tank cars. The remaining 2/3 of all transports are carried out by other means – primarily with road tankers.  Pursuant to the UBA text (Joas et al., 2004), [(JOAS2004)] a total of 1/3 of all relevant transports are carried out with railway tank cars. The remaining 2/3 of all transports are carried out by other means – primarily with road tankers. 
 +
 The 1/3 to 2/3 relationship given by the report is assumed to be also applicable to the emissions occurring in connection with cleaning. Currently, the inventory includes 36,000 kg of NMVOC emissions from cleaning of railway tank cars. Emissions from cleaning of other transport equipment – primarily road tankers – are derived from that figure; they amount to about 70,000 kg NMVOC. The 1/3 to 2/3 relationship given by the report is assumed to be also applicable to the emissions occurring in connection with cleaning. Currently, the inventory includes 36,000 kg of NMVOC emissions from cleaning of railway tank cars. Emissions from cleaning of other transport equipment – primarily road tankers – are derived from that figure; they amount to about 70,000 kg NMVOC.
-More-thorough emissions collection upon opening of manholes of railway tank cars (a volume of about 14.6 m³ escapes), along with more thorough treatment of exhaust from cleaning tank interiors, could further reduce VOC emissions. Exhaust cleansing is assumed to be carried out via one-stage active-charcoal adsorption. For an initial load of 1 kg/m³, exhaust concentration levels can be reduced by 99.5 %, to less than 5 g/m³. As a result, the remaining emissions amount to only 1.1 t. This is equivalent to a reduction of about 97 % from the determined level of 36.5 t/a (without adsorption) (Joas et al. (2004), p. 34) [(JOAS2004)]. 
  
 +More-thorough emissions collection upon opening of manholes of railway tank cars (a volume of about 14.6 m³ escapes), along with more thorough treatment of exhaust from cleaning tank interiors, could further reduce VOC emissions. Exhaust cleansing is assumed to be carried out via one-stage active-charcoal adsorption. For an initial load of 1 kg/m<sup>3</sup>, exhaust concentration levels can be reduced by 99.5 %, to less than 5 g/m<sup>3</sup>. As a result, the remaining emissions amount to only 1.1 t. This is equivalent to a reduction of about 97 % from the determined level of 36.5 t/a (without adsorption) (Joas et al. (2004), p. 34) [(JOAS2004)].
  
-Generally, the emission factors listed below have been verified by the study [(Theloke2013)]. + 
 +Generally, the emission factors listed below have been verified by the study [(THELOKE2013)]. 
  
 ^ **Process responsible for NMVOC emissions**                                                                                              ^                     ^ Emission factor [kg/t]  ^ ^ **Process responsible for NMVOC emissions**                                                                                              ^                     ^ Emission factor [kg/t]  ^
-| Drip losses in refuelling at filling stations                                                                                            |  gasoline           | 0.117                   +| Drip losses in refuelling at filling stations                                                                                            |  gasoline            0.117                  
-| Transfers from road tankers to filling stations (20th Ordinance Implementing the Federal Immission Control Act – vapour displacement)    |  gasoline           | 1.4                     +| Transfers from road tankers to filling stations (20th Ordinance Implementing the Federal Immission Control Act – vapour displacement)    |  gasoline            1.4                    
-| Ventilation in connection with transports with inland-waterway tankers                                                                    gasoline           | 0.025                   +| Ventilation in connection with transports with inland-waterway tankers                                                                    gasoline            0.025                  
-| Transfers from filling station tanks to vehicle tanks (21st Ordinance Implementing the Federal Immission Control Act – vapour recovery)  |  gasoline           | 1.4                     +| Transfers from filling station tanks to vehicle tanks (21st Ordinance Implementing the Federal Immission Control Act – vapour recovery)  |  gasoline            1.4                    
-| Drip losses in refuelling at filling stations                                                                                            |  diesel             | 0.1                     +| Drip losses in refuelling at filling stations                                                                                            |  diesel              0.1                    
-| Transports from refineries to transport vehicles                                                                                          diesel             | 0.008                   +| Transports from refineries to transport vehicles                                                                                          diesel              0.008                  
-| Transfers from filling-station tanks to vehicle tanks                                                                                    |  diesel             | 0.003                   +| Transfers from filling-station tanks to vehicle tanks                                                                                    |  diesel              0.003                  
-| Drip losses in refuelling at transfer stations                                                                                            light heating oil  | 0.0011                  +| Drip losses in refuelling at transfer stations                                                                                            light heating oil  |  0.0011                 
-| Transports from refineries to transport vehicles                                                                                          light heating oil  | 0.0053                  +| Transports from refineries to transport vehicles                                                                                          light heating oil  |  0.0053                 
-| Transfers from filling-station tanks to vehicle tanks                                                                                    |  light heating oil  | 0.0063                  |+| Transfers from filling-station tanks to vehicle tanks                                                                                    |  light heating oil  |  0.0063                 |
  
 ===== Recalculations ===== ===== Recalculations =====
  
-Please refer to overarching chapter [[sector:energy:fugitive:start|1.B - Fugitive Emissions from fossil fuels]] +<WRAP center round info 60%> 
 +For more details please refer to the super-ordinate chapter [[sector:energy:fugitive:start|1.B - Fugitive Emissions from fossil fuels]] 
 +</WRAP>
 ===== Planned improvements ===== ===== Planned improvements =====
  
-No further improvements are planned.+ * an ongoing research project estimate emissions from storage and cleaning of tanks for oil and oil products - results are planned to be implemented into the inventory in 2025/26
 ===== References ===== ===== References =====
  
  
 [(MWV>MWV (2020). Annual report of the Association of the German Petroleum Industry „Jahresbericht 2020“ [[https://www.mwv.de/publikationen/jahresberichte/|External Link]] )] [(MWV>MWV (2020). Annual report of the Association of the German Petroleum Industry „Jahresbericht 2020“ [[https://www.mwv.de/publikationen/jahresberichte/|External Link]] )]
-[(BVEG>BVEG (2019). Annual report of the Association of Oil and Gas Producing "Die E&P-Industrie in Zahlen. Statisticher Bericht 2019: Zahlen”. [[https://www.bveg.de/content/download/13460/154828/file/BVEG%20Statistischer%20Bericht%202019.pdf|External Link, PDF]] )] +[(BVEG>BVEG (2019). Annual report of the Association of Oil and Gas Producing "Die E&P-Industrie in Zahlen. Statisticher Bericht 2019: Zahlen”. [[https://www.bveg.de/der-verband/publikationen/statistischer-jahresbericht-2019/|External Link]] )] 
-[(WEG2008>WEG (2008). Report of the Association of Oil and Gas Producing "Erdgas – Erdöl. Entstehung-Suche-Förderung", Hannover, 34 S. [[https://www.bveg.de/content/download/1990/11317/file/Erdgas%20Erd%C3%B6l%20Entstehung%20Suche%20F%C3%B6rderung.pdf|External Link, PDF]] )]+[(WEG2008>WEG (2008). Report of the Association of Oil and Gas Producing "Erdgas – Erdöl. Entstehung-Suche-Förderung", Hannover, 34 S. [[https://www.bveg.de/wp-content/uploads/2021/09/BVEG-Leitfaden-Bohrungsintegritaet_Technische-Regel.pdf|External Link, PDF]] )]
 [(IPCC2006>IPCC (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan. [[https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/|External Link]] )] [(IPCC2006>IPCC (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan. [[https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/|External Link]] )]
 [(THELOKE2013>Theloke, J., Kampffmeyer, T., Kugler, U., Friedrich, R., Schilling, S., Wolf, L., & Springwald, T. (2013). Ermittlung von Emissionsfaktoren und Aktivitätsraten im Bereich IPCC (1996) 1.B.2.a. i-vi - Diffuse Emissionen aus Mineralöl und Mineralölprodukten (Förderkennzeichen 360 16 033). Stuttgart. )] [(THELOKE2013>Theloke, J., Kampffmeyer, T., Kugler, U., Friedrich, R., Schilling, S., Wolf, L., & Springwald, T. (2013). Ermittlung von Emissionsfaktoren und Aktivitätsraten im Bereich IPCC (1996) 1.B.2.a. i-vi - Diffuse Emissionen aus Mineralöl und Mineralölprodukten (Förderkennzeichen 360 16 033). Stuttgart. )]
 [(CECH2017>Cech, M., Davis, P., Gambardella, F., Haskamp, A., González, P. H., Spence, M., & Larivé, J.-F. (2017). Performance of European cross-country oil pipelines - Statistical summary of reported spillages in 2015 and since 1971 [[https://www.concawe.eu/publications/concawe-reports/|External Link]] )] [(CECH2017>Cech, M., Davis, P., Gambardella, F., Haskamp, A., González, P. H., Spence, M., & Larivé, J.-F. (2017). Performance of European cross-country oil pipelines - Statistical summary of reported spillages in 2015 and since 1971 [[https://www.concawe.eu/publications/concawe-reports/|External Link]] )]
-[(MBBM2010>Müller-BBM (2010). UBA research project No. 3707 42 103/ 01,  Aufbereitung von Daten der Emissionserklärungen gemäß 11. BImSchV aus dem Jahre 2004 für die Verwendung bei der UNFCC- und UNECE-Berichterstattung - Bereich Lageranlagen (Bericht Nr. M74 244/7, UBA FKZ 3707 42 103/01). [[http://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3923.pdf|External Link]] )] +[(MBBM2010>Müller-BBM (2010). UBA research project No. 3707 42 103/ 01,  Aufbereitung von Daten der Emissionserklärungen gemäß 11. BImSchV aus dem Jahre 2004 für die Verwendung bei der UNFCC- und UNECE-Berichterstattung - Bereich Lageranlagen (Bericht Nr. M74 244/7, UBA FKZ 3707 42 103/01). [[https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3923.pdf|External Link]] )] 
-[(Bender2019>Bender, M., & von Müller, G. (2019). Konsolidierung der Treibhausgasemissionsberechnungen unter der 2. Verpflichtungsperiode des Kyoto-Protokolls und der neuen Klimaschutz-Berichterstattungspflichten an die EU (FKZ 3716 41 107 0).)]+[(Bender2019>Bender, M., & von Müller, G. (2019). Emissionsfaktoren zu Raffinerien für die nationale Emissionsberichterstattung (FKZ 3716 41 107 0).)]
 [(VDI2000>VDI (2000). VDI-Richtlinie 2440: Emissionsminderung - Mineralölraffinerien, published by V. D. I. )] [(VDI2000>VDI (2000). VDI-Richtlinie 2440: Emissionsminderung - Mineralölraffinerien, published by V. D. I. )]
 [(BAUER2010>Bauer, S., Polcher, D. A., & Greßmann, A. (2010). Evaluierung der Anforderungen der 20. BImSchV für Binnentankschiffe im Hinblick auf die Wirksamkeit der Emissionsminderung klimarelevanter Gase (FKZ 3709 45 326). München.)] [(BAUER2010>Bauer, S., Polcher, D. A., & Greßmann, A. (2010). Evaluierung der Anforderungen der 20. BImSchV für Binnentankschiffe im Hinblick auf die Wirksamkeit der Emissionsminderung klimarelevanter Gase (FKZ 3709 45 326). München.)]