meta data for this page
Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
sector:waste:cremation:start [2021/01/18 19:01] – created kotzulla | sector:waste:cremation:start [2024/11/06 13:50] (current) – external edit 127.0.0.1 | ||
---|---|---|---|
Line 1: | Line 1: | ||
====== 5.C.1.b v - Cremation===== | ====== 5.C.1.b v - Cremation===== | ||
+ | |||
+ | ^ Category Code ^ Method | ||
+ | | 5.C.1.b.v | ||
+ | ^ ^ NO< | ||
+ | | Key Category: | ||
+ | | ||
+ | \\ | ||
+ | =====Method===== | ||
+ | |||
+ | Emissions from cremation are not a key source and of minor priority. Since March 1997, a national legal ordinance for cremation plants nationwide is in force (27. BImSchV). | ||
+ | |||
+ | ====Activity data==== | ||
+ | |||
+ | Activity data for this category are based on data from the statistics of the " | ||
+ | |||
+ | __Table 1: Annual amount of cremated human bodies, in [kt]__ | ||
+ | ^ 1990 | ||
+ | | 13.55 | 25.32 | 26.24 | 29.22 | 34.18 | 45.88 | 56.77 | 60.19 | | ||
+ | Source: own calculation, | ||
+ | ====Emission factors==== | ||
+ | |||
+ | Emission factors used are default values from the EMEP/EEA air pollutant emission inventory guidebook 2016 [(EMEP/EEA air pollutant emission inventory guidebook 2016, Copenhagen, 2016)] as well as new national data for POPs from the research project "POP- und Hg-Emissionen aus abfallwirtschaftlichen Anlagen" | ||
+ | |||
+ | In 2018 the TERT noted that the German Hg EF is 100 times smaller than the default value proposed in the 2016 EMEP/EEA Guidebook and the Cd and Pb EF are 1000 times smaller than the default values proposed in the 2016 EMEP/EEA Guidebook. However, the EF for Pb and Cd are based on national expert judgement: assumption that a) the emissions behave similarly to dust and b) the dust limit value of the air pollution control specification (27th BImSchV) is complied with (to be confirmed on the basis of the new measurement data from 5 crematoria with different exhaust gas cleaning systems). The Hg EF was calculated on the basis of the German report on “OSPAR Recommendation 2003/4 on controlling the dispersal of mercury from crematoria", | ||
+ | |||
+ | After the finalization of a research Project [(FKZ 3716 53 3021 „Umweltrelevanz und Stand der Technik bei Einäscherungsanlagen“ (Environmental relevance and state of the art for cremation plants); URL: https:// | ||
+ | This results in the following weighted mean value: | ||
+ | |||
+ | <WRAP center round info 40%> | ||
+ | 0.9 x 0.0225 g/h + 0.1 x 0.2468 g/h = 0.0449588207 g/h. | ||
+ | </ | ||
+ | | ||
+ | Since the cremation duration is approximately one hour, the mean value per hour corresponds to the Hg load per cremation and is used accordingly in the inventory calculation. Values are interpolated between the two endpoints 2010 and 2018. | ||
+ | |||
+ | EF for TSP, PM< | ||
+ | |||
+ | ===== Trends in emissions ===== | ||
+ | |||
+ | Most emission trends are the result of the increasing trend of AD, partly with decreasing EF at the same time. As result even the trend for Hg emissions is decreasing for a temporary period. | ||
+ | |||
+ | [{{: | ||
+ | |||
+ | ===== Recalculations ===== | ||
+ | |||
+ | <WRAP center round info 60%> | ||
+ | With **activity data and emission factors remaining unrevised**, | ||
+ | </ | ||
+ | |||
+ |