meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
sector:energy:fuel_combustion:transport:civil_aviation:domestic_civil_aviation_-_lto [2021/04/08 08:59] kotzullasector:energy:fuel_combustion:transport:civil_aviation:domestic_civil_aviation_-_lto [2021/05/27 08:14] – [Actitvity Data] kotzulla
Line 18: Line 18:
 ==== Actitvity Data ==== ==== Actitvity Data ====
  
-Specific jet kerosene consumption during LTO-stage is calculated within TREMOD AV as described in the [[sector:energy:fuel_combustion:transport:civil_aviation| superordinate chapter]].+Specific jet kerosene consumption during LTO-stage is calculated within TREMOD AV as described in the superordinate chapter.
  
 __Table 1: Percentual annual fuel consumption during LTO-stage of domestic flights__ __Table 1: Percentual annual fuel consumption during LTO-stage of domestic flights__
Line 43: Line 43:
 Furthermore, the **newly implemented EF(BC)** have been estimated via f-BCs as provided in the 2019 EMEP/EEA Guidebook [(EMEPEEA2019)], Chapter 1.A.3.a, 1.A.5.b Aviation, page 49: "Conclusion" Furthermore, the **newly implemented EF(BC)** have been estimated via f-BCs as provided in the 2019 EMEP/EEA Guidebook [(EMEPEEA2019)], Chapter 1.A.3.a, 1.A.5.b Aviation, page 49: "Conclusion"
  
-For more details, please see [[sector:energy:fuel_combustion:transport:civil_aviation| superordinate chapter]] on civil aviation.+For more details, please see the superordinate chapter on civil aviation.
  
 __Table 3: Country-specific emission factors, in kg/TJ__ __Table 3: Country-specific emission factors, in kg/TJ__
Line 72: Line 72:
 </WRAP> </WRAP>
    
- +<WRAP center round info 100%> 
-__Table 4: Tier1 emission factors for heavy-metal and POP exhaust emissions__ +For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and Appendix 2.Persistent Organic Pollutant (POP) exhaust emissions from mobile sources
-|                     |  **Pb**            |  **Cd**  |  **Hg**  |  **As**  |  **Cr**  |  **Cu**  |  **Ni**  |  **Se**  |  **Zn**  |  **B[a]P**  |  **B[b]F**  |  **B[k]F**  |  **I[...]p**  |  **PAH 1-4**  |  **PCDD/F** +</WRAP>
-|                      [g/TJ]                                                                                            |||||||||   [mg/TJ]                                                           |||||  [µg/TJ]     | +
-^  Kerosene            NE                |  NE      |  NE      |  NE      |  NE      |  NE      |  NE      |  NE      |  NE      |  NE          NE          NE          NE            NE            NE          | +
-^  Aviation gasoline  |  9,481<sup>1</sup> | 0.005    |    0.200 |    0.007 |    0.145 |    0.103 |    0.053 |    0.005 |    0.758 |  126        |  182        |  90          205          |  602          |  NE          | +
-<sup>1</supcalculated from the average lead content of AvGas 100 LL (low-lead) of 0.56 g Pb/liter+
  
 ===== Trend discussion for Key Sources ===== ===== Trend discussion for Key Sources =====
  
-> NFR 1.A.3.a ii (i) - Domestic Civil Aviation - LTO is **no key source**.+<WRAP center round info 60%> 
 +NFR sub-category 1.A.3.a ii (i) is no key source for emissions. 
 +</WRAP>
  
 Where **sulphur oxides** emissions are dominated by jet kerosene due to the amount of fuel used, the majority of **carbon monoxide** stems from the consumption of avgas given the much higher emission factor applied to this fuel. Where **sulphur oxides** emissions are dominated by jet kerosene due to the amount of fuel used, the majority of **carbon monoxide** stems from the consumption of avgas given the much higher emission factor applied to this fuel.
Line 164: Line 162:
 ^ absolute change                                    |       8,60 |       10,2 |       20,6 |       29,1 |       31,4 |       31,1 |       29,9 |       26,0 |       20,6 |       19,6 |       19,6 |       21,7 |       24,0 |       18,3 |       15,0 |       16,5 |      23,6 | ^ absolute change                                    |       8,60 |       10,2 |       20,6 |       29,1 |       31,4 |       31,1 |       29,9 |       26,0 |       20,6 |       19,6 |       19,6 |       21,7 |       24,0 |       18,3 |       15,0 |       16,5 |      23,6 |
 ^ relative change                                    |      4,23% |      5,08% |      8,10% |      11,1% |      12,1% |      12,2% |      12,0% |      10,8% |      8,59% |      8,39% |      8,43% |      9,10% |      9,96% |      7,43% |      6,30% |      6,95% |     9,90% | ^ relative change                                    |      4,23% |      5,08% |      8,10% |      11,1% |      12,1% |      12,2% |      12,0% |      10,8% |      8,59% |      8,39% |      8,43% |      9,10% |      9,96% |      7,43% |      6,30% |      6,95% |     9,90% |
 +
 +
 +<WRAP center round info 60%>
 +For more information on recalculated emission estimates for Base Year and 2018, please see the pollutant specific recalculation tables following chapter [[general:recalculations:start | 8.1 - Recalculations]].
 +</WRAP>
 +
 +===== Uncertainties =====
 +
 +For uncertainties information, please see [[sector:energy:fuel_combustion:transport:civil_aviation:start|main chapter]] on civil aviation.
 +
 +===== Planned improvements =====
 +
 +For information on planned improvements, please see [[sector:energy:fuel_combustion:transport:civil_aviation:start|main chapter]] on civil aviation.