meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:energy:fuel_combustion:transport:civil_aviation:domestic_civil_aviation_-_lto [2021/04/08 07:56] kotzullasector:energy:fuel_combustion:transport:civil_aviation:domestic_civil_aviation_-_lto [2021/12/15 20:00] (current) – external edit 127.0.0.1
Line 18: Line 18:
 ==== Actitvity Data ==== ==== Actitvity Data ====
  
-Specific jet kerosene consumption during LTO-stage is calculated within TREMOD AV as described in the [[sector:energy:fuel_combustion:transport:civil_aviation| superordinate chapter]].+Specific jet kerosene consumption during LTO-stage is calculated within TREMOD AV as described in the superordinate chapter.
  
 __Table 1: Percentual annual fuel consumption during LTO-stage of domestic flights__ __Table 1: Percentual annual fuel consumption during LTO-stage of domestic flights__
Line 43: Line 43:
 Furthermore, the **newly implemented EF(BC)** have been estimated via f-BCs as provided in the 2019 EMEP/EEA Guidebook [(EMEPEEA2019)], Chapter 1.A.3.a, 1.A.5.b Aviation, page 49: "Conclusion" Furthermore, the **newly implemented EF(BC)** have been estimated via f-BCs as provided in the 2019 EMEP/EEA Guidebook [(EMEPEEA2019)], Chapter 1.A.3.a, 1.A.5.b Aviation, page 49: "Conclusion"
  
-For more details, please see [[sector:energy:fuel_combustion:transport:civil_aviation| superordinate chapter]] on civil aviation.+For more details, please see the superordinate chapter on civil aviation.
  
 __Table 3: Country-specific emission factors, in kg/TJ__ __Table 3: Country-specific emission factors, in kg/TJ__
Line 72: Line 72:
 </WRAP> </WRAP>
    
- +<WRAP center round info 100%> 
-__Table 4: Tier1 emission factors for heavy-metal and POP exhaust emissions__ +For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and Appendix 2.Persistent Organic Pollutant (POP) exhaust emissions from mobile sources
-|                     |  **Pb**            |  **Cd**  |  **Hg**  |  **As**  |  **Cr**  |  **Cu**  |  **Ni**  |  **Se**  |  **Zn**  |  **B[a]P**  |  **B[b]F**  |  **B[k]F**  |  **I[...]p**  |  **PAH 1-4**  |  **PCDD/F** +</WRAP>
-|                      [g/TJ]                                                                                            |||||||||   [mg/TJ]                                                           |||||  [µg/TJ]     | +
-^  Kerosene            NE                |  NE      |  NE      |  NE      |  NE      |  NE      |  NE      |  NE      |  NE      |  NE          NE          NE          NE            NE            NE          | +
-^  Aviation gasoline  |  9,481<sup>1</sup> | 0.005    |    0.200 |    0.007 |    0.145 |    0.103 |    0.053 |    0.005 |    0.758 |  126        |  182        |  90          205          |  602          |  NE          | +
-<sup>1</supcalculated from the average lead content of AvGas 100 LL (low-lead) of 0.56 g Pb/liter+
  
 ===== Trend discussion for Key Sources ===== ===== Trend discussion for Key Sources =====
  
-> NFR 1.A.3.a ii (i) - Domestic Civil Aviation - LTO is **no key source**.+<WRAP center round info 60%> 
 +NFR sub-category 1.A.3.a ii (i) is no key source for emissions. 
 +</WRAP>
  
 Where **sulphur oxides** emissions are dominated by jet kerosene due to the amount of fuel used, the majority of **carbon monoxide** stems from the consumption of avgas given the much higher emission factor applied to this fuel. Where **sulphur oxides** emissions are dominated by jet kerosene due to the amount of fuel used, the majority of **carbon monoxide** stems from the consumption of avgas given the much higher emission factor applied to this fuel.
Line 165: Line 163:
 ^ relative change                                    |      4,23% |      5,08% |      8,10% |      11,1% |      12,1% |      12,2% |      12,0% |      10,8% |      8,59% |      8,39% |      8,43% |      9,10% |      9,96% |      7,43% |      6,30% |      6,95% |     9,90% | ^ relative change                                    |      4,23% |      5,08% |      8,10% |      11,1% |      12,1% |      12,2% |      12,0% |      10,8% |      8,59% |      8,39% |      8,43% |      9,10% |      9,96% |      7,43% |      6,30% |      6,95% |     9,90% |
  
-The TSP emissions calculated depend directly on the reported lead emissions: The emission factor for TSP is 1.6 times the emission factor used for leadEF(TSP) = 1.6 x EF(Pb)+ 
-The applied procedure is similar to the one used for calculating TSP emissions from leaded gasoline used in road transport.+<WRAP center round info 60%> 
 +For more information on recalculated emission estimates for Base Year and 2018, please see the pollutant specific recalculation tables following chapter [[general:recalculations:start | 8.- Recalculations]]. 
 +</WRAP> 
 + 
 +===== Uncertainties ===== 
 + 
 +For uncertainties information, please see [[sector:energy:fuel_combustion:transport:civil_aviation:start|main chapter]] on civil aviation
 + 
 +===== Planned improvements ===== 
 + 
 +For information on planned improvements, please see [[sector:energy:fuel_combustion:transport:civil_aviation:start|main chapter]] on civil aviation. 
 + 
  
 [(KNOERR2012> Knörr, W., Schacht, A., & Gores, S. (2010): Entwicklung eines eigenständigen Modells zur Berechnung des Flugverkehrs (TREMOD-AV) : Endbericht. Endbericht zum F+E-Vorhaben 360 16 029, URL: https://www.umweltbundesamt.de/publikationen/entwicklung-eines-modells-zur-berechnung; Berlin & Heidelberg, 2012.)] [(KNOERR2012> Knörr, W., Schacht, A., & Gores, S. (2010): Entwicklung eines eigenständigen Modells zur Berechnung des Flugverkehrs (TREMOD-AV) : Endbericht. Endbericht zum F+E-Vorhaben 360 16 029, URL: https://www.umweltbundesamt.de/publikationen/entwicklung-eines-modells-zur-berechnung; Berlin & Heidelberg, 2012.)]