meta data for this page
  •  

This is an old revision of the document!


1.A.3.d i (i) - International maritime navigation

Short description

Under NFR category 1.A.3.d i (i), emissions from international maritime navigation fuelling in and starting form German harbours are reported.

Method AD EF Key Category
T1, T2, T3 NS, M CS, M not included in key category analysis

Click to view Legend

Click to hide Legend

T = key source by Trend L = key source by Level

Methods
D Default
RA Reference Approach
T1 Tier 1 / Simple Methodology *
T2 Tier 2*
T3 Tier 3 / Detailed Methodology *
C CORINAIR
CS Country Specific
M Model
* as described in the EMEP/CORINAIR Emission Inventory Guidebook - 2007, in the group specific chapters.
AD - Data Source for Activity Data
NS National Statistics
RS Regional Statistics
IS International Statistics
PS Plant Specific data
AS Associations, business organisations
Q specific questionnaires, surveys
EF - Emission Factors
D Default (EMEP Guidebook)
C Confidential
CS Country Specific
PS Plant Specific data

The source category includes international deep sea fishery and international marine transport. Emissions from fuel consumption for international transports of ocean-going ships are not reported as part of total national inventories.

Method

Activity data

Primary fuel delivery data (primary activity data, PAD) for international maritime navigation is included in line 6 - 'International Deep-Sea Bunkers' of the National Energy Balances (NEB) (AGEB, 2019) 1) together with respective data for IMO-registered ships used in national maritime transport (see 1.A.3.d ii (a) ]), fishing (see 1.A.4.c iii ]) and military navigation (see 1.A.5.b iii ]).

The AD applied for international maritime navigation therefore represents the remains of primary fuel delivery data from NEB line 6 minus the modelled consumption data estimated for non-IMO ships in 1.A.3.d ii (a), 1.A.4.c iii and 1.A.5.b iii:

math AD_\text{ 1.A.3.d i} = PAD_\text{ NEB line 6} - AD_\text{ 1.A.3.d ii (a) - IMO} - AD_\text{ 1.A.4.c iii - IMO} - AD_\text{ 1.A.5.b iii - IMO} math

Table 1: Annual fuel consumption, in terajoules

= 1990 = 1995 = 2000 = 2005 = 2006 = 2007 = 2008 = 2009 = 2010 = 2011 = 2012 = 2013 = 2014 = 2015 = 2016 = 2017 = 2018
~ Diesel Oil > 12,748 > 12,919 > 13,664 > 11,993 > 15,817 > 17,524 > 13,105 > 14,412 > 16,662 > 15,370 > 12,594 > 12,414 > 13,674 > 33,088 > 28,093 > 22,924 > 15,419
~ Heavy Fuel Oil > 68,484 > 56,323 > 60,984 > 78,182 > 78,257 > 96,625 > 96,017 > 85,865 > 86,934 > 86,687 > 81,171 > 71,364 > 67,670 > 57,850 > 74,837 > 58,781 > 39,287
Ʃ 1.A.3.d i (i) ~ 81,232 ~ 69,242 ~ 74,648 ~ 90,175 ~ 94,074 ~ 114,149 ~ 109,122 ~ 100,277 ~ 103,596 ~ 102,057 ~ 93,765 ~ 83,778 ~ 81,344 ~ 90,938 ~ 102,930 ~ 81,705 ~ 54,706

source: own estimates based on 2)

gallery size="medium" : 1A3di_AD.png gallery

Consumption of heavy oil has been increasing since 1984 as a result of high petroleum prices, global increases in transports and increasing maritime use of diesel engines that can run on heavy oil. The emissions fluctuations that occurred in the navigation sector in 1992 and 1996 were caused by trade and oil crises.

++ Emission factors

For main pollutants and particulate matter, modelled emission factors are available from (Deichnik, K. (2019)) 3).

Here, for sulphur dioxide and particulate matter, annual values are available representing the impact of fuel sulphur legislation. In addition, regarding SO,,x,,, the increasing operation of so-called scrubbers in order to fullfil emission limits especially within SECA areas is reflected for heavy fuel oil.

Table 2: Annual country-specific emission factors, in kg/TJ

= 1990 = 1995 = 2000 = 2005 = 2006 = 2007 = 2008 = 2009 = 2010 = 2011 = 2012 = 2013 = 2014 = 2015 = 2016 = 2017 = 2018
< Diesel oil
~ NH,,3,, > 0.32 > 0.32 > 0.32 > 0.32 > 0.32 > 0.32 > 0.32 > 0.32 > 0.32 > 0.32 > 0.32 > 0.32 > 0.32 > 0.33 > 0.32 > 0.32 > 0.32
~ NMVOC > 48.7 > 48.7 > 48.7 > 48.7 > 48.7 > 48.7 > 48.7 > 48.7 > 48.7 > 48.7 > 48.7 > 48.4 > 48.0 > 44.8 > 44.7 > 45.0 > 45.2
~ NO,,x,, > 1,070 > 1,070 > 1,070 > 1,070 > 1,070 > 1,070 > 1,070 > 1,069 > 1,069 > 1,069 > 1,069 > 1,073 > 1,077 > 1,151 > 1,132 > 1,157 > 1,128
~ SO,,x,, > 465.5 > 419.0 > 232.8 > 186.2 > 186.2 > 186.2 > 139.7 > 69.8 > 69.8 > 65.2 > 54.5 > 52.6 > 50.5 > 40.7 > 40.6 > 40.7 > 40.8
~ PM,,2.5,,1 > 352.4 > 318.0 > 176.5 > 141.2 > 141.3 > 141.3 > 105.9 > 53.0 > 53.0 > 49.6 > 49.5 > 49.1 > 49.1 > 52.7 > 54.5 > 54.5 > 53.1
~ PM,,10,, > 377.1 > 340.3 > 188.9 > 151.0 > 151.2 > 151.2 > 113.3 > 56.7 > 56.7 > 53.0 > 53.0 > 52.5 > 52.6 > 56.4 > 58.3 > 58.3 > 56.9
~ TSP > 377.1 > 340.3 > 188.9 > 151.0 > 151.2 > 151.2 > 113.3 > 56.7 > 56.7 > 53.0 > 53.0 > 52.5 > 52.6 > 56.4 > 58.3 > 58.3 > 56.9
~ BC2 > 109.2 > 98.6 > 54.7 > 43.8 > 43.8 > 43.8 > 32.8 > 16.4 > 16.4 > 15.4 > 15.3 > 15.2 > 15.2 > 16.3 > 16.9 > 16.9 > 16.5
~ CO > 127 > 128 > 128 > 128 > 128 > 128 > 128 > 128 > 128 > 128 > 128 > 127 > 128 > 134 > 139 > 138 > 136
< Heavy fuel oil
~ NH,,3,, > 0.34 > 0.34 > 0.34 > 0.34 > 0.34 > 0.34 > 0.34 > 0.34 > 0.34 > 0.34 > 0.34 > 0.34 > 0.35 > 0.33 > 0.33 > 0.34 > 0.35
~ NMVOC > 36.6 > 36.6 > 36.6 > 36.6 > 36.6 > 36.6 > 36.6 > 36.6 > 36.6 > 36.6 > 36.6 > 37.6 > 37.8 > 30.0 > 36.8 > 30.4 > 28.3
~ NO,,x,, > 1,379 > 1,378 > 1,378 > 1,378 > 1,378 > 1,378 > 1,378 > 1,378 > 1,378 > 1,377 > 1,379 > 1,382 > 1,393 > 1,348 > 1,245 > 1,360 > 1,503
~ SO,,x,, > 1,319 > 1,332 > 1,323 > 1,336 > 744 > 742 > 742 > 744 > 496 > 496 > 496 > 496 > 506 > 47.5 > 49.3 > 46.4 > 49.8
~ PM,,2.5,,1 > 479 > 483 > 480 > 485 > 270 > 269 > 269 > 270 > 180 > 180 > 180 > 184 > 187 > 151 > 205 > 153 > 123
~ PM,,10,, > 526 > 532 > 528 > 533 > 297 > 296 > 296 > 297 > 198 > 198 > 198 > 203 > 206 > 166 > 226 > 168 > 135
~ TSP > 526 > 532 > 528 > 533 > 297 > 296 > 296 > 297 > 198 > 198 > 198 > 203 > 206 > 166 > 226 > 168 > 135
~ BC2 > 57.4 > 58.0 > 57.6 > 58.2 > 32.4 > 32.3 > 32.3 > 32.4 > 21.6 > 21.6 > 21.6 > 22.1 > 22.4 > 18.1 > 24.7 > 18.3 > 14.7
~ CO > 162 > 162 > 162 > 162 > 162 > 162 > 162 > 162 > 162 > 162 > 162 > 162 > 167 > 165 > 198 > 167 > 134
1
2
NOTE: For the country-specific emission factors applied for particulate matter, no clear indication is available, whether or not condensables are included.

+ Trends of exhaust emissions from international navigation

NFR 1.A.3.d i is not considered in the key category analysis.

Emission trends for unregulated pollutants (such as NH,,3,,, NO,,x,,, NMVOC and CO, all HM and POPs) with only slight changes in the annual over-all IEFs applied, follow the trends in fuel consumption and the shares of diesel and heavy fuel oil:

gallery size="medium" : EM_1A3di_NH3.png : EM_1A3di_Cd.png gallery

On the other hand, the emission trends for SO,,x,, and PM, both depending on the fuel's sulphur content, follow not only the trends in fuel consumption but do also reflect fuel-sulphur legislation:

gallery size="medium" : EM_1A3di_SO2.png : EM_1A3di_PM.png gallery

+ Recalculations

Resulting from changes in the fuel consumption data computed within 4) for domestic maritime navigation, the activity data for 2017 for international maritime navigation have been reviesed.

Table 3: Revised fuel consumption data 2017, in terajoules

= = Diesel oil = Heavy fuel oil = over-all consumption
~ Submission 2020 > 22,924 > 58,781 > 81,828
~ Submission 2019 > 23,165 > 58,781 > 82,069
~ absolute change > -241 > 0.00 > -241
~ relative change > -1.04% > 0.00% > -0.29%

In contrast, all country-specific and default emission factors applied remain unrevised compared to last year's submission.

For more information on recalculated emission estimates for Base Year and 2017, please see the pollutant-specific recalculation tables following chapter 8.1 - Recalculations].

+ Uncertainties

Uncertainty estimates for activity data of mobile sources derive from research project FKZ 360 16 023: “Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland” by Knörr et al. (2009) 5).

+ Planned improvements

Besides routine maintenance and further development of the BSH model, no improvements are planned.


bibliography : 1 : AGEB, 2019: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: http://www.ag-energiebilanzen.de/7-0-Bilanzen-1990-2017.html, Köln & Berlin, 2019. : 2 : Deichnik, K. (2019): Aktualisierung und Revision des Modells zur Berechnung der spezifischen Verbräuche und Emissionen des von Deutschland ausgehenden Seeverkehrs. from Bundesamts für Seeschifffahrt und Hydrographie (BSH); Hamburg, 2019. : 3 : EMEP/EEA (2019): EMEP/EEA air pollutant emission inventory guidebook 2019, URL: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019; Copenhagen, 2019. : 4 : Rentz et al., 2008: Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des Umweltbundesamtes, FKZ 205 67 444, UBA Texte | 01/2008, January 2008; URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer : 5 : Knörr et al. (2009): Knörr, W., Heldstab, J., & Kasser, F.: Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland; final report; URL: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3937.pdf, FKZ 360 16 023, Heidelberg & Zürich, 2009. bibliography


1) (bibcite 1)
2) (bibcite 2)
3) (bibcite 2)
4) (bibcite 2)
5) (bibcite 5)