meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:energy:fuel_combustion:transport:navigation:international_maritime_navigation [2021/04/10 06:47] kotzullasector:energy:fuel_combustion:transport:navigation:international_maritime_navigation [2021/12/15 20:00] (current) – external edit 127.0.0.1
Line 13: Line 13:
  
 \\ \\
- 
  
 ===== Methodology ===== ===== Methodology =====
Line 19: Line 18:
 ==== Activity data ==== ==== Activity data ====
  
-Primary fuel delivery data (primary activity data, PAD) for //international maritime navigation// is included in line 6 - 'International Deep-Sea Bunkers' of the National Energy Balances (NEB) (AGEB, 2019) [((bibcite 1))] together with respective data for IMO-registered ships used in //national maritime transport// (see [[[1-a-3-d-ii-a-national-maritime-navigation | 1.A.3.d ii (a) ]]]), //fishing// (see [[[1-a-4-c-iii-fishing-mobile | 1.A.4.c iii ]]]) and //military navigation// (see [[[1-a-5-b-iii-emissions-from-military-navigation | 1.A.5.b iii ]]]).+Primary fuel delivery data (primary activity data, PAD) for //international maritime navigation// is included in line 6 - 'International Deep-Sea Bunkers' of the National Energy Balances (NEB) (AGEB, 2020) [(AGEB2020)] together with respective data for IMO-registered ships used in //national maritime transport// (see 1.A.3.d ii (a)), //fishing// (see NFR 1.A.4.c iii) and //military navigation// (see NFR 1.A.5.b iii).
  
 The AD applied for //international maritime navigation// therefore represents the remains of primary fuel delivery data from NEB line 6 minus the modelled consumption data estimated for non-IMO ships in //1.A.3.d ii (a)//, //1.A.4.c iii// and //1.A.5.b iii//: The AD applied for //international maritime navigation// therefore represents the remains of primary fuel delivery data from NEB line 6 minus the modelled consumption data estimated for non-IMO ships in //1.A.3.d ii (a)//, //1.A.4.c iii// and //1.A.5.b iii//:
Line 31: Line 30:
 ^ Heavy fuel oil         68.484 |     56.323 |     60.984 |     78.182 |     78.257 |     96.625 |     96.017 |     85.865 |     86.934 |     86.687 |     81.171 |     71.364 |     67.670 |     57.850 |     74.837 |     58.781 |     39.380 |     26.601 | ^ Heavy fuel oil         68.484 |     56.323 |     60.984 |     78.182 |     78.257 |     96.625 |     96.017 |     85.865 |     86.934 |     86.687 |     81.171 |     71.364 |     67.670 |     57.850 |     74.837 |     58.781 |     39.380 |     26.601 |
 | **Ʃ 1.A.3.d ii**       81.232 ^     69.242 ^     74.648 ^     90.175 ^     94.074 ^    114.149 ^    109.122 ^    100.277 ^    103.596 ^    102.057 ^     93.765 ^     83.778 ^     81.344 ^     90.938 ^    102.930 ^     81.705 ^     54.592 ^     44.928 ^ | **Ʃ 1.A.3.d ii**       81.232 ^     69.242 ^     74.648 ^     90.175 ^     94.074 ^    114.149 ^    109.122 ^    100.277 ^    103.596 ^    102.057 ^     93.765 ^     83.778 ^     81.344 ^     90.938 ^    102.930 ^     81.705 ^     54.592 ^     44.928 ^
-source: own estimates based on [(DEICHNIK2020)]+source: own estimates based on underlying BSH model (Deichnik, K. (2020)) [(DEICHNIK2020)]
  
 Consumption of heavy oil has been increasing since 1984 as a result of high petroleum prices, global increases in transports and increasing maritime use of diesel engines that can run on heavy oil. The emissions fluctuations that occurred in the navigation sector in 1992 and 1996 were caused by trade and oil crises. Consumption of heavy oil has been increasing since 1984 as a result of high petroleum prices, global increases in transports and increasing maritime use of diesel engines that can run on heavy oil. The emissions fluctuations that occurred in the navigation sector in 1992 and 1996 were caused by trade and oil crises.
Line 37: Line 36:
 Furthermore, after 2014, with ever stricter legislation espacially regarding fuel sulphur content, an ongoing shift from heavy fuel oil to maritime diesel oil can be observed. Furthermore, after 2014, with ever stricter legislation espacially regarding fuel sulphur content, an ongoing shift from heavy fuel oil to maritime diesel oil can be observed.
  
-=== Emission factors === +{{ :sector:energy:fuel_combustion:transport:navigation:1a3di_ad.png?700 }} 
 + 
 +==== Emission factors ==== 
  
 For **main pollutants** and **particulate matter**, modelled emission factors are available from (Deichnik, K. (2020)) [(DEICHNIK2020)].  For **main pollutants** and **particulate matter**, modelled emission factors are available from (Deichnik, K. (2020)) [(DEICHNIK2020)]. 
  
 Here, for **sulphur dioxide** and **particulate matter**, annual values are available representing the impact of fuel sulphur legislation. Here, for **sulphur dioxide** and **particulate matter**, annual values are available representing the impact of fuel sulphur legislation.
-In addition, regarding SO,,x,,, the increasing operation of so-called scrubbers in order to fullfil emission limits especially within SECA areas is reflected for heavy fuel oil.+In addition, regarding SO<sub>2</sub>, the increasing operation of so-called scrubbers in order to fullfil emission limits especially within SECA areas is reflected for heavy fuel oil.
  
 __Table 2: Annual country-specific emission factors, in kg/TJ__ __Table 2: Annual country-specific emission factors, in kg/TJ__
Line 66: Line 67:
 ^ TSP<sup>2</sup>            526 |        532 |        528 |        533 |        297 |        296 |        296 |        297 |        198 |        198 |        198 |        203 |        206 |       166 |       226 |       168 |       135 |       135 | ^ TSP<sup>2</sup>            526 |        532 |        528 |        533 |        297 |        296 |        296 |        297 |        198 |        198 |        198 |        203 |        206 |       166 |       226 |       168 |       135 |       135 |
 ^ CO                  |        162 |        162 |        162 |        162 |        162 |        162 |        162 |        162 |        162 |        162 |        162 |        162 |        167 |       165 |       198 |       167 |       134 |       134 | ^ CO                  |        162 |        162 |        162 |        162 |        162 |        162 |        162 |        162 |        162 |        162 |        162 |        162 |        167 |       165 |       198 |       167 |       134 |       134 |
-<sup>1</sup> estimated from f-BCs as provided in [(EMEPEEA2019)]: f-BC (HFO) = 0.12, f-BC (MDO/MGO) = 0.31 as provided in [((bibcite 2))], chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii Navigation, Tables 3-1 & 3-2 \\+<sup>1</sup> estimated from f-BCs as provided in [(EMEPEEA2019)]: f-BC (HFO) = 0.12, f-BC (MDO/MGO) = 0.31 as provided in [(EMEPEEA2019)], chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii Navigation, Tables 3-1 & 3-2 \\
 <sup>2</sup> ratios PM<sub>2.5</sub> : PM<sub>10</sub> : TSP derived from the tier1 default EF as provided in [(EMEPEEA2019)], chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii Navigation, Tables 3-1 & 3-2 <sup>2</sup> ratios PM<sub>2.5</sub> : PM<sub>10</sub> : TSP derived from the tier1 default EF as provided in [(EMEPEEA2019)], chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii Navigation, Tables 3-1 & 3-2
  
-**NOTE:** For the country-specific emission factors applied for particulate matter, no clear indication is available, whether or not condensables are included. +<WRAP center round info 100%> 
 +For the country-specific emission factors applied for particulate matter, no clear indication is available, whether or not condensables are included. 
 +</WRAP>  
 + 
 +<WRAP center round info 100%> 
 +For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and  Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources. 
 +</WRAP>
  
-> For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and  Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources. 
  
 ===== Discussion of emission trends===== ===== Discussion of emission trends=====
Line 78: Line 84:
  
 Emission trends for unregulated pollutants (such as **NH<sub>3</sub>**, **NO<sub>x</sub>**, **NMVOC** and **CO**, all **HM** and **POPs**) with only slight changes in the annual over-all IEFs applied, follow the trends in fuel consumption and the shares of diesel and heavy fuel oil: Emission trends for unregulated pollutants (such as **NH<sub>3</sub>**, **NO<sub>x</sub>**, **NMVOC** and **CO**, all **HM** and **POPs**) with only slight changes in the annual over-all IEFs applied, follow the trends in fuel consumption and the shares of diesel and heavy fuel oil:
 +
 +{{ :sector:energy:fuel_combustion:transport:navigation:1a3di_em_nox.png?700 }}
  
 On the other hand, the emission trends for **SO<sub>x</sub>** and **PM**, both depending on the fuel's sulphur content, follow not only the trends in fuel consumption but do also reflect fuel-sulphur legislation: On the other hand, the emission trends for **SO<sub>x</sub>** and **PM**, both depending on the fuel's sulphur content, follow not only the trends in fuel consumption but do also reflect fuel-sulphur legislation:
  
-===== Recalculations =====+{{ :sector:energy:fuel_combustion:transport:navigation:1a3di_em_so2.png?700 }}
  
-Resulting from changes in the fuel consumption data computed within [(DEICHNIK2020)] for //domestic// maritime navigation, the **activity data** for 2017  for //international// maritime navigation have been reviesed.+===== Recalculations =====
  
-__Table 3: Revised fuel consumption data 2017in terajoules__ +Resulting from changes in the fuel consumption data computed within [(DEICHNIK2020)] for //domestic// maritime navigationthe **activity data** for 2018 for //international// maritime navigation have been reviesed.
-||= ||= **Diesel oil** ||= **Heavy fuel oil** ||= **over-all consumption** ||= +
-||~ Submission 2020 ||> 22,924 ||> 58,781 ||> 81,828 ||> +
-||~ Submission 2019 ||> 23,165 ||> 58,781 ||> 82,069 ||> +
-||~ absolute change ||> -241  ||> 0.00  ||> -241  ||> +
-||~ relative change ||> -1.04% ||> 0.00% ||> -0.29% ||>+
  
 +__Table 3: Revised fuel consumption data 2018, in terajoules__
 +|                  ^  Diesel<sup>1</sup>  ^  Heavy fuel oil  ^  OVER-ALL  ^
 +^ Submission 2021  |               15.213 |           39.380 |     54.674 |
 +^ Submission 2020  |               15.419 |           39.287 |     54.788 |
 +^ absolute change  |                 -206 |               92 |       -114 |
 +^ relative change  |               -1,34% |            0,24% |     -0,21% |
 +<sup>1</sup> as provided in AGEB (2020) [(AGEB2020)]: including light heating oil 
  
 In contrast, all country-specific and default **emission factors applied remain unrevised** compared to last year's submission. In contrast, all country-specific and default **emission factors applied remain unrevised** compared to last year's submission.
Line 101: Line 111:
 ===== Uncertainties ===== ===== Uncertainties =====
  
-Uncertainty estimates for **activity data** of mobile sources derive from research project FKZ 360 16 023: "Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland" by Knörr et al. (2009) [((bibcite 5))].+Uncertainty estimates for **activity data** of mobile sources derive from research project FKZ 360 16 023: "Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland" by Knörr et al. (2009) [(KNOERR2009)].
  
 ===== Planned improvements =====  ===== Planned improvements =====