meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:energy:fuel_combustion:transport:railways:start [2021/01/18 12:47] – [Table] kotzullasector:energy:fuel_combustion:transport:railways:start [2021/12/15 20:00] (current) – external edit 127.0.0.1
Line 5: Line 5:
 In category //1.A.3.c - Railways//, emissions from fuel combustion in German railways and from the related abrasion and wear of contact line, braking systems and tyres on rails are reported.  In category //1.A.3.c - Railways//, emissions from fuel combustion in German railways and from the related abrasion and wear of contact line, braking systems and tyres on rails are reported. 
  
-^  Method   AD     ^  EF         Key Category                                                                          ^ +Category Code   Method                                ||||^  AD                                ||||^  EF                                  ||||| 
-|  T1, T2  |  NS, M  |  CS, D, M  |  **L**: TSP, PM<sub>2.5</sub>, **L&T**: PM<sub>10</sub>PM<sub>2.5</sub>, **L**: TSP  |+| 1.A.3.c         |  T1, T2                                    |||||  NS, M                                 |||||  CS, D, M                                  ||||| 
 + Key Category  ^  SO<sub>2</sub>     ^  NO<sub>x</sub>  ^  NH<sub>3</sub>  ^  NMVOC  ^  CO    BC    Pb    Hg    Cd    Diox  ^  PAH  ^  HCB  ^  TSP  ^  PM<sub>10</sub>  ^  PM<sub>2.5</sub>  ^ 
 +| 1.A.3.c          -/-        |  -/T  |  -/-  |  -/-    |  -/-  |  -/-  |  -/-  |  -/-  |  -/-  |  -/-    -/-  |  -    |  L/-  |  L/-    L/-    |
  
-{{page>general:Misc:LegendEIT:start}}+{{page>general:Misc:LegendEIT:start}}  
 + 
 +\\
  
 Germany's railway sector is undergoing a long-term modernisation process, aimed at making electricity the main energy source for rail transports. Use of electricity, instead of diesel fuel, to power locomotives has been continually increased, and electricity now provides 80% of all railway traction power. Railways' power stations for generation of traction current are allocated to the stationary component of the energy sector (1.A.1.a) and are not included in the further description that follows here. In energy input for trains of German railways, diesel fuel is the only energy source that plays a significant role apart from electric power.  Germany's railway sector is undergoing a long-term modernisation process, aimed at making electricity the main energy source for rail transports. Use of electricity, instead of diesel fuel, to power locomotives has been continually increased, and electricity now provides 80% of all railway traction power. Railways' power stations for generation of traction current are allocated to the stationary component of the energy sector (1.A.1.a) and are not included in the further description that follows here. In energy input for trains of German railways, diesel fuel is the only energy source that plays a significant role apart from electric power. 
Line 16: Line 20:
 === Activity Data === === Activity Data ===
  
-Basically, total inland deliveries of //diesel oil// are available from the National Energy Balances (NEBs) (AGEB, 2019) [((bibcite 1))]. This data is based upon sales data of the Association of the German Petroleum Industry (MWV) [((bibcite 2))]. As a recent revision of MWV data on diesel oil sales for the years 2005 to 2009 has not yet been adopted to the respective NEBs, this original MWV data has been used for this five years. +Basically, total inland deliveries of //diesel oil// are available from the National Energy Balances (NEBs) (AGEB, 2020) [(AGEB2020)]. This data is based upon sales data of the Association of the German Petroleum Industry (MWV) [(MWV2020)]. As a recent revision of MWV data on diesel oil sales for the years 2005 to 2009 has not yet been adopted to the respective NEBs, this original MWV data has been used for this five years. 
  
 Data on the consumption of biodiesel in railways is provided in the NEBs as well, from 2004 onward. But as the NEBs do not provide a solid time series regarding most recent years, the data used for the inventory is estimated based on the prescribed shares of biodiesel to be added to diesel oil.  Data on the consumption of biodiesel in railways is provided in the NEBs as well, from 2004 onward. But as the NEBs do not provide a solid time series regarding most recent years, the data used for the inventory is estimated based on the prescribed shares of biodiesel to be added to diesel oil. 
  
-Small quantities of //solid fuels// are used for historical steam engines vehicles operated mostly for tourism and exhibition purposes. Official fuel delivery data are available for lignite, through 2002, and for hard coal, through 2000, from the NEBs. In order to complete these time series, a study was carried out in 2012 by Hedel, R., and Kunze, J. (2012) [((bibcite 3))]. During this study, questionaires were provided to any known operator of historical steam engines in Germany. Here, due to limited data archiving, nearly complete data could only be gained for years as of 2005. For earlier years, in order to achieve a solid time series, conservative gap filling was applied.  +Small quantities of //solid fuels// are used for historical steam engines vehicles operated mostly for tourism and exhibition purposes. Official fuel delivery data are available for lignite, through 2002, and for hard coal, through 2000, from the NEBs. In order to complete these time series, a study was carried out in 2012 by Hedel, R., and Kunze, J. (2012) [(HEDEL2012)]. During this study, questionaires were provided to any known operator of historical steam engines in Germany. Here, due to limited data archiving, nearly complete data could only be gained for years as of 2005. For earlier years, in order to achieve a solid time series, conservative gap filling was applied.  
-A follow-up study to gain original cosumption data for 2015 was carried out in 2016 by Illichmann, S. (2016) [((bibcite 4))].+A follow-up study to gain original cosumption data for 2015 was carried out in 2016 by Illichmann, S. (2016) [(ILLICHMANN2016)].
  
 __Table 1: Overview of activity-data sources for domestic fuel sales to railway operators__ __Table 1: Overview of activity-data sources for domestic fuel sales to railway operators__
Line 36: Line 40:
  
 __Table 2: Annual fuel consumption in German railways, in terajoules__ __Table 2: Annual fuel consumption in German railways, in terajoules__
-|                          **1990**  |  **1995**  |  **2000**  |  **2005**  |  **2010**  |  **2011**  |  **2012**  |  **2013**  |  **2014**  |  **2015**  |  **2016**  |  **2017**  |  **2018**  | **2019** +|                          **1990**  |  **1995**  |  **2000**  |  **2005**  |  **2010**  |  **2011**  |  **2012**  |  **2013**  |  **2014**  |  **2015**  |  **2016**  |  **2017**  |  **2018**  **2019** 
-| **Diesel Oil**          |     38.458 |     31.054 |     25.410 |     18.142 |     14.626 |     14.730 |     13.514 |     13.771 |     12.283 |     13.321 |     13.775 |     11.344 |      9.425 |     9.531 | +| **Diesel Oil**          |     38,458 |     31,054 |     25,410 |     18,142 |     14,626 |     14,730 |     13,514 |     13,771 |     12,283 |     13,321 |     13,775 |     11,344 |      9,425 |      9,531 | 
-| **Biodiesel**                    0 |          0 |          0 |        401 |        957 |        974 |        890 |        804 |        751 |        727 |        729 |        606 |        548 |       543 | +| **Biodiesel**                    0 |          0 |          0 |        401 |        957 |        974 |        890 |        804 |        751 |        727 |        729 |        606 |        548 |        543 | 
-^ Liquids TOTAL               38.458 ^     31.054 ^     25.410 ^     18.543 ^     15.583 ^     15.704 ^     14.404 ^     14.575 ^     13.034 ^     14.048 ^     14.504 ^     11.950 ^      9.973 ^    10.074 ^ +^ Liquids TOTAL               38,458 ^     31,054 ^     25,410 ^     18,543 ^     15,583 ^     15,704 ^     14,404 ^     14,575 ^     13,034 ^     14,048 ^     14,504 ^     11,950 ^      9,973 ^     10,074 ^ 
-| **Lignite Briquettes**  |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |         0 | +| **Lignite Briquettes**  |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 | 
-| **Raw Lignite**                  0 |         86 |          1 |          1 |          1 |          1 |          1 |          1 |          1 |          1 |          1 |          1 |          1 |         1 | +| **Raw Lignite**                  0 |         86 |          1 |          1 |          1 |          1 |          1 |          1 |          1 |          1 |          1 |          1 |          1 |          1 | 
-| **Hard Coal**                  576 |        250 |        250 |        255 |        314 |        345 |        357 |        352 |        341 |        339 |        340 |        340 |        340 |       340 | +| **Hard Coal**                  576 |        250 |        250 |        255 |        314 |        345 |        357 |        352 |        341 |        339 |        340 |        340 |        340 |        340 | 
-| **Hard Coal Coke**      |          0 |          0 |        431 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |         0 | +| **Hard Coal Coke**      |          0 |          0 |        431 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 |          0 | 
-^ Solids TOTAL            ^        576 ^        336 ^        682 ^        256 ^        315 ^        346 ^        357 ^        353 ^        342 ^        340 ^        341 ^        341 ^        341 ^       341 ^ +^ Solids TOTAL            ^        576 ^        336 ^        682 ^        256 ^        315 ^        346 ^        357 ^        353 ^        342 ^        340 ^        341 ^        341 ^        341 ^        341 ^ 
-^ Ʃ 1.A.3.c                   39.034 ^     62.444 ^     51.502 ^     37.342 ^     31.481 ^     31.755 ^     29.165 ^     29.503 ^     26.411 ^     28.436 ^     29.348 ^     24.240 ^     20.286 ^    20.488 ^+^ Ʃ 1.A.3.c                   39,034 ^     62,444 ^     51,502 ^     37,342 ^     31,481 ^     31,755 ^     29,165 ^     29,503 ^     26,411 ^     28,436 ^     29,348 ^     24,240 ^     20,286 ^     20,488 ^
  
 The use of other fuels – such as vegetable oils or gas – in private narrow-gauge railway vehicles has not been included to date and may still be considered negligible.  The use of other fuels – such as vegetable oils or gas – in private narrow-gauge railway vehicles has not been included to date and may still be considered negligible. 
Line 51: Line 55:
 __Table 3: Annual transport performance, in Mio tkm (ton-kilometers)__ __Table 3: Annual transport performance, in Mio tkm (ton-kilometers)__
 |                        |  **1990**  |  **1995**  |  **2000**  |  **2005**  |  **2010**  |  **2011**  |  **2012**  |  **2013**  |  **2014**  |  **2015**  |  **2016**  |  **2017**  |  **2018**  | **2019**  | |                        |  **1990**  |  **1995**  |  **2000**  |  **2005**  |  **2010**  |  **2011**  |  **2012**  |  **2013**  |  **2014**  |  **2015**  |  **2016**  |  **2017**  |  **2018**  | **2019**  |
-| **Electric Traction**  |    361,515 |    337,853 |    361,633 |    356,605 |    344,546 |    342,701 |    350,085 |    335,298 |    331,235 |    323,387 |    295,798 |    296,280 |    288,336 |           +| **Electric Traction**  |    361,515 |    337,853 |    361,633 |    356,605 |    344,546 |    342,701 |    350,085 |    335,298 |    331,235 |    323,387 |    295,798 |    296,280 |    288,336 |   281,130 
-| **Diesel Traction**    |     98,812 |     58,805 |     37,237 |     26,540 |     26,702 |     27,403 |     26,791 |     23,768 |     23,734 |     21,397 |     21,484 |     21,365 |     19,580 |           +| **Diesel Traction**    |     98,812 |     58,805 |     37,237 |     26,540 |     26,702 |     27,403 |     26,791 |     23,768 |     23,734 |     21,397 |     21,484 |     21,365 |     19,580 |    18,058 
-^ Ʃ 1.A.3.c          ^    460,326 ^    396,658 ^    398,870 ^    383,145 ^    371,248 ^    370,104 ^    376,876 ^    359,065 ^    354,970 ^    344,785 ^    317,282 ^    317,645 ^    307,916 ^           ^+^ Ʃ 1.A.3.c              ^    460,326 ^    396,658 ^    398,870 ^    383,145 ^    371,248 ^    370,104 ^    376,876 ^    359,065 ^    354,970 ^    344,785 ^    317,282 ^    317,645 ^    307,916 ^   299,188 ^
  
 +{{ :sector:energy:fuel_combustion:transport:railways:1a3c_ad_liquid.png?700 }}
 +{{ :sector:energy:fuel_combustion:transport:railways:1a3c_ad_solid.png?700 }}
  
-[[gallery size="medium"]] +Regarding particulate-matter and heavy-metal emissions from **abrasion and wear of contact line, braking systems, tyres on rails**, annual transport performances of railway vehicles with electrical and Diesel traction derived from Knörr et al. (2020a[(KNOERR2020a)] are applied as activity data
-: 1A3c_AD(TJ).png +
-: 1A3c_AD(km).png +
-[[/gallery]]+
  
-Regarding particulate-matter and heavy-metal emissions from **abrasion and wear of contact line, braking systems, tyres on rails**, annual transport performances of railway vehicles with electrical and Diesel traction derived from Knörr et al. (2019a) [((bibcite 5))] are applied as activity data.  +==== Emission factors ====
- +
-=== Emission factors ===+
  
 The (implied) emission factors used here for estimating **emissions from diesel fuel combustion** of very different quality:  The (implied) emission factors used here for estimating **emissions from diesel fuel combustion** of very different quality: 
 For main pollutants, CO and PM, annual tier2 IEF computed within the TREMOD model are used, representing the development of German railway fleet, fuel quality and mitigation technologies [((bibcite 4))].  For main pollutants, CO and PM, annual tier2 IEF computed within the TREMOD model are used, representing the development of German railway fleet, fuel quality and mitigation technologies [((bibcite 4))]. 
-On the other hand, constant default values from (EMEP/EEA, 2019) [((bibcite 6))] are used for all reported PAHs and heavy metals and from Rentz et al. (2008) [((bibcite 7))] regarding PCDD/F.+On the other hand, constant default values from (EMEP/EEA, 2019) [(EMEPEEA2019)] are used for all reported PAHs and heavy metals and from Rentz et al. (2008) [(RENTZ2008)] regarding PCDD/F.
 As no emission factors are available for HCB and PCBs, no such emissions have been calculated yet. As no emission factors are available for HCB and PCBs, no such emissions have been calculated yet.
  
 Regarding **emissions from solid fuels** used in historic steam engines, all emission factors displayed below have been adopted from small-scale stationary combustion. Regarding **emissions from solid fuels** used in historic steam engines, all emission factors displayed below have been adopted from small-scale stationary combustion.
  
-Furthermore, regarding **emissions from abrasion and wear**, emission factors are calculated from PM,,10,, emission estimates directly provided by the German railroad company Deutsche Bahn AG. +Furthermore, regarding **emissions from abrasion and wear**, emission factors are calculated from PM<sub>10</sub> emission estimates directly provided by the German railroad company Deutsche Bahn AG. 
-As these original emissions are only available as of 2013, implied EF(PM,,10,,) were calculated from the emission estimates extrapolated backwards from 2013 to 1990 and the transport performance data available from TREMOD. + 
-Regarding PM,,2.5,,, and TSP, due to leck of better information, a fractional distribution of 0.5 : 1 : 1 (PM,,2.5,, : PM,,10,, : TSP) is assumed for now.+As these original emissions are only available as of 2013, implied EF(PM,<sub>10</sub>) were calculated from the emission estimates extrapolated backwards from 2013 to 1990 and the transport performance data available from TREMOD. 
 + 
 +Regarding PM<sub>2.5</sub>, and TSP, due to leck of better information, a fractional distribution of 0.5 : 1 : 1 (PM<sub>2.5</sub> : PM<sub>10</sub> : TSP) is assumed for now.
 Emission factors for emssions of copper, nickel and chrome are calculated via typical shares of the named metals in the contact line (copper) and in the braking systems (Ni and Cr). Other heavy metals contained in alloys used for the contact line (silver, magnesium, tin) are not taken into account here. Furthermore, emissions from other wear parts (e.g. the current collector) are not estimated. However, these components are not supposed to contain any of the nine heavy metals to be reported here (current collectors are made of aluminium alloys and coal). Emission factors for emssions of copper, nickel and chrome are calculated via typical shares of the named metals in the contact line (copper) and in the braking systems (Ni and Cr). Other heavy metals contained in alloys used for the contact line (silver, magnesium, tin) are not taken into account here. Furthermore, emissions from other wear parts (e.g. the current collector) are not estimated. However, these components are not supposed to contain any of the nine heavy metals to be reported here (current collectors are made of aluminium alloys and coal).
  
 __Table 3: Annual country-specific emission factors for diesel fuels<sup>1</sup>, in kg/TJ__ __Table 3: Annual country-specific emission factors for diesel fuels<sup>1</sup>, in kg/TJ__
 |                    **1990**  |  **1995**  |  **2000**  |  **2005**  |  **2010**  |  **2011**  |  **2012**  |  **2013**  |  **2014**  |  **2015**  |  **2016**  |  **2017**  |  **2018**  | **2019**  | |                    **1990**  |  **1995**  |  **2000**  |  **2005**  |  **2010**  |  **2011**  |  **2012**  |  **2013**  |  **2014**  |  **2015**  |  **2016**  |  **2017**  |  **2018**  | **2019**  |
-^ NH<sub>3</sub>    |       0,54 |       0,54 |       0,54 |       0,54 |       0,54 |       0,54 |       0,54 |       0,54 |       0,54 |       0,54 |       0,54 |       0,54 |       0,54 |      0,54 | +^ NH<sub>3</sub>    |       0.54 |       0.54 |       0.54 |       0.54 |       0.54 |       0.54 |       0.54 |       0.54 |       0.54 |       0.54 |       0.54 |       0.54 |       0.54 |      0.54 | 
-^ NMVOC                    109 |        100 |       90,2 |       64,8 |       52,0 |       54,3 |       44,8 |       41,9 |       41,2 |       38,5 |       38,2 |       37,2 |       35,2 |      35,0 | +^ NMVOC                    109 |        100 |       90.2 |       64.8 |       52.0 |       54.3 |       44.8 |       41.9 |       41.2 |       38.5 |       38.2 |       37.2 |       35.2 |      35.0 | 
-^ NO<sub>x</sub>    |       1170       1207       1225       1111 |        970 |        990 |        919 |        899 |        886 |        826 |        801 |        775 |        747 |       724 | +^ NO<sub>x</sub>    |      1,170      1,207      1,225      1,111 |        970 |        990 |        919 |        899 |        886 |        826 |        801 |        775 |        747 |       724 | 
-^ SO<sub>x</sub>    |        191 |       60,5 |       14,1 |       0,32 |       0,32 |       0,32 |       0,32 |       0,32 |       0,33 |       0,32 |       0,33 |       0,33 |       0,33 |      0,33 | +^ SO<sub>x</sub>    |        191 |       60.5 |       14.1 |       0.32 |       0.32 |       0.32 |       0.32 |       0.32 |       0.33 |       0.32 |       0.33 |       0.33 |       0.33 |      0.33 | 
-^ BC<sup>3</sup>    |       28,8 |       28,3 |       23,8 |       15,2 |       11,5 |       12,0 |       10,4 |        9,5 |        9,3 |        8,6 |        8,5 |        8,0 |        7,6 |       7,3 | +^ BC<sup>3</sup>    |       28.8 |       28.3 |       23.8 |       15.2 |       11.5 |       12.0 |       10.4 |        9.5 |        9.3 |        8.6 |        8.5 |        8.0 |        7.6 |       7.3 | 
-^ PM<sub>2.5</sub>  |       44,4 |       43,6 |       36,6 |       23,4 |       17,7 |       18,5 |       16,0 |       14,6 |       14,3 |       13,3 |       13,1 |       12,4 |       11,7 |      11,2 | +^ PM<sub>2.5</sub>  |       44.4 |       43.6 |       36.6 |       23.4 |       17.7 |       18.5 |       16.0 |       14.6 |       14.3 |       13.3 |       13.1 |       12.4 |       11.7 |      11.2 | 
-^ PM<sub>10</sub>         44,4 |       43,6 |       36,6 |       23,4 |       17,7 |       18,5 |       16,0 |       14,6 |       14,3 |       13,3 |       13,1 |       12,4 |       11,7 |      11,2 | +^ PM<sub>10</sub>         44.4 |       43.6 |       36.6 |       23.4 |       17.7 |       18.5 |       16.0 |       14.6 |       14.3 |       13.3 |       13.1 |       12.4 |       11.7 |      11.2 | 
-^ TSP<sup>2</sup>         44,4 |       43,6 |       36,6 |       23,4 |       17,7 |       18,5 |       16,0 |       14,6 |       14,3 |       13,3 |       13,1 |       12,4 |       11,7 |      11,2 | +^ TSP<sup>2</sup>         44.4 |       43.6 |       36.6 |       23.4 |       17.7 |       18.5 |       16.0 |       14.6 |       14.3 |       13.3 |       13.1 |       12.4 |       11.7 |      11.2 | 
-^ CO                |        287 |        292 |        255 |        162 |        121 |        121 |        105 |        101 |       98,9 |       94,7 |       93,3 |       92,6 |       88,5 |      88,2 |+^ CO                |        287 |        292 |        255 |        162 |        121 |        121 |        105 |        101 |       98.9 |       94.7 |       93.3 |       92.6 |       88.5 |      88.2 |
 <sup>1</sup> due to lack of better information: similar EF are applied for fossil diesel oil and biodiesel \\ <sup>1</sup> due to lack of better information: similar EF are applied for fossil diesel oil and biodiesel \\
 <sup>2</sup> EF(PM<sub>2.5</sub>) also applied for PM<sub>10</sub> and TSP (assumption: >99% of TSP consists of PM<sub>2.5</sub>)\\ <sup>2</sup> EF(PM<sub>2.5</sub>) also applied for PM<sub>10</sub> and TSP (assumption: >99% of TSP consists of PM<sub>2.5</sub>)\\
Line 93: Line 96:
  
 __Table 4: Emission factors applied for solid fuels, in kg/TJ__ __Table 4: Emission factors applied for solid fuels, in kg/TJ__
-^                      **NH<sub>3</sub>**  ^  **NMVOC**  ^  **NO,,x,,**  ^  **SO,,x,,**  ^  **PM,,2.5,,**  ^  **PM,,10,,**  ^  **TSP**  ^  **BC**  ^  **CO**  ^+^                      **NH<sub>3</sub>**  ^  **NMVOC**  ^  **NO<sub>x</sub>**  ^  **SO<sub>x</sub>**  ^  **PM<sub>2.5</sub>**  ^  **PM<sub>10</sub>**  ^  **TSP**  ^  **BC**  ^  **CO**  ^
 | **Hard coal**                       4.00 |        15.0 |           120 |           650 |             222 |            250 |       278 |     14.2 |      500 | | **Hard coal**                       4.00 |        15.0 |           120 |           650 |             222 |            250 |       278 |     14.2 |      500 |
 | **Hard coal coke**  |                 4.00 |        0.50 |           120 |           500 |            15.0 |           15.0 |      15.0 |     0.96 |    1,000 | | **Hard coal coke**  |                 4.00 |        0.50 |           120 |           500 |            15.0 |           15.0 |      15.0 |     0.96 |    1,000 |
  
 __Table 4: Country-specific emission factors for abrasive emissions, in g/km__ __Table 4: Country-specific emission factors for abrasive emissions, in g/km__
-^                                  **PM,,2.5,,** ^ **PM,,10,,**  ^ **TSP**  ^ **BC**  ^ **Pb**  ^ **Cd**  ^ **Hg**  ^ **As**  ^ **Cr**   ^ **Cu**   ^ **Ni**   ^ **Se**  ^ **Zn** +^                                  **PM<sub>2.5</sub>**   **PM<sub>10</sub>**  ^  **TSP**  **BC**  **Pb**  **Cd**  **Hg**  **As**  **Cr**   **Cu**   **Ni**   **Se**  **Zn** 
-Contact line <sup>1</sup>              0.00016 |       0.00032 |  0.00032 |  NA     |  NA     |  NA     |  NA     |  NA     |  NA      |  0.00033 |  NA      |  NA     |  NA     +Contact line <sup>1</sup>                      0.00016 |               0.00032 |   0.00032 |  NA      |  NA      |  NA      |  NA      |  NA      |  NA      |  0.00033 |  NA      |  NA      |  NA      
-Tyres on rails <sup>2</sup>              0.009 |         0.018 |    0.018 |  NA     |  NA                                                                                ||||||||| +Tyres on rails <sup>2</sup>                      0.009 |                 0.018 |     0.018 |  NA      |  NA                                                                                      ||||||||| 
-Braking system <sup>3</sup>              0.004 |         0.008 |    0.008 |  NA     |  NA     |  NA     |  NA     |  NA     |  0.00008 |  NA      |  0.00016 |  NA     |  NA     +Braking system <sup>3</sup>                      0.004 |                 0.008 |     0.008 |  NA      |  NA      |  NA      |  NA      |  NA      |  0.00008 |  NA      |  0.00016 |  NA      |  NA      
-Current collector <sup>4</sup>  |  NE            |  NE           |  NE      |  NE     |  NA                                                                                ||||||||| +Current collector <sup>4</sup>  |  NE                    |  NE                   |  NE       |  NE      |  NA                                                                                      ||||||||| 
-<sup>1</sup> assumption: 100 per cent copper +<sup>1</sup> assumption: 100 per cent copper \\ 
-<sup>2</sup> assumption: 100 per cent steel +<sup>2</sup> assumption: 100 per cent steel\\ 
-<sup>3</sup> assumption: steel alloy containing Chromium and Nickel+<sup>3</sup> assumption: steel alloy containing Chromium and Nickel\\
 <sup>4</sup> typically: aluminium alloy + coal contacts; no particulate matter emissions calculated yet <sup>4</sup> typically: aluminium alloy + coal contacts; no particulate matter emissions calculated yet
  
-**NOTE:** With respect to the emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly.[[footnote]] During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions. [[/footnote]]+<WRAP center round info 100%> 
 +With respect to the emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly. (( During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions.)) 
 +</WRAP>
  
-> For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to [[[ appendix2.3-HM-from-mobile-sources | Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources]]] and [[[ appendix2.4-POPs-from-mobile-sources | Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources ]]]+<WRAP center round info 100%> 
- +For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources. 
-[!-- +</WRAP>
-__Table 5: Tier1 emission factors for heavy-metal and POP exhaust emissions__ +
-||= ||= **Pb** ||= **Cd** ||= **Hg** ||= **As** ||= **Cr** ||= **Cu** ||= **Ni** ||= **Se** ||= **Zn** ||= **B[a]P** ||= **B[b]F** ||= **B[k]F** ||= **I[...]p** ||= **PAH 1-4** ||= **HCB** ||= **PCBs** ||= **PCDD/F** ||= +
-||= ||||||||||||||||||= [g/TJ] ||||||||||||||= [mg/TJ] ||= [µg/TJ] ||= +
-||~ Diesel oil||> 1.21 ^^2^^ ||> 0.23 ^^1^^ ||> 0.12 ^^1^^ ||> 0.002 ^^2^^ ||> 1.16 ^^2^^||> 39.57  ^^2^^||> 1.63 ^^2^^ ||> 0.23 ^^2^^ ||> 23.28 ^^2^^ ||> 698 ^^2^^ ||> 1,164 ^^2^^ ||> 801 ^^1^^ ||> 184 ^^1^^||> 2,847 ^^3^^ ||= NE ||= NE ||> 2.09 ||= +
-||~ Biodiesel||> 0,01 ||> 0,001 ||> 0,14 ||> 0,003 ||> 0,23 ||> 0,15 ||> 0,01 ||> 0,003 ||> 0,48 ||> 806 ||> 1.343 ||> 924 ||> 212 ||> 3.284 ||= NE ||= NE ||> 2,41 ||= +
-||~ Lignite Briquettes ||||||||||||||||||= NE ||> 34,500 ||= NE ||= NE ||= NE ||> 90,000 ||= NE ||= NE ||> 29.80 ||= +
-||~ Raw Lignite ||||||||||||||||||= NE ||||||||||= NE ||= NE ||= NE ||= NE ||= +
-||~ Hard Coal ||||||||||||||||||= NE ||||||||||= NE ||= NE ||= NE ||= NE ||= +
-||~ Hard Coal Coke ||||||||||||||||||= NE ||||||||||= NE ||= NE ||= NE ||= NE ||= +
-^^1^^ tier1 default from [((bibcite 5))], chapter: 1.A.3.b i-iv - Road transport: exhaust emissions: tier1 value for diesel vehicles +
-^^2^^ tier1 default from [((bibcite 5))], chapter: 1.A.3.c - Railways[[footnote]] EMEP/EEA GB 2016, chapter 1.A.3c, page 6, Table 3-1: "...B(k)f & Indeno (1,2,3-cd) pyrene and dioxins emission factor values are not available for railway emissions. It is therefore recommended to use values corresponding to old technology heavy duty vehicles from the Exhaust Emissions from Road Transport chapter (1.A.3.b.iii)...". [[/footnote]]   +
-^^3^^ sum of tier1 default value applied for B[a]P, B[b]F, B[k]F, and I[...]P  +
- +
---]+
  
-+ __Discussion of emission trends__ 
  
-**NFR 1.A.3.c** is no key source.+===== Discussion of emission trends ===== 
 +  
 +__Table: Outcome of Key Category Analysis__ 
 +|  for: ^  NO<sub>x</sub>  ^  TSP    ^  PM<sub>10</sub>  ^  PM<sub>2.5</sub> 
 +|   by: |  Trend            Level  |  L/-              |  L/-               |
  
 Basically, for all unregulated pollutants, emission trends directly follow the trend in over-all fuel consumption. Basically, for all unregulated pollutants, emission trends directly follow the trend in over-all fuel consumption.
Line 137: Line 131:
 Therefore, for the **main pollutants**, **carbon monoxide**, **particulate matter** and **PAHs**, emission trends show remarkable jumps especially after 1995 that result from the significantly higher amounts of solid fuels used. Therefore, for the **main pollutants**, **carbon monoxide**, **particulate matter** and **PAHs**, emission trends show remarkable jumps especially after 1995 that result from the significantly higher amounts of solid fuels used.
  
-[[gallery size="medium"]] +{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_nh3.png?700 }} 
-1A3c_EM_NH3.png +{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_nox.png?700 }}
-1A3c_EM_NOx.png +
-[[/gallery]]+
  
-For all fractions of **particulate matter**, the majority of emissions generally result from abrasion and wear and the combustion of diesel fuels. Additional jumps in the over-all trend result from the use of lignite briquettes (1996-2001). Here, as the EF(BC) for fuel combustion are estimated via fractions provided in [((bibcite 5))], black carbon emissions follow the corresponding emissions of PM,,2.5,,+For all fractions of **particulate matter**, the majority of emissions generally result from abrasion and wear and the combustion of diesel fuels. Additional jumps in the over-all trend result from the use of lignite briquettes (1996-2001). Here, as the EF(BC) for fuel combustion are estimated via fractions provided in [(EMEPEEA2019)], black carbon emissions follow the corresponding emissions of PM,,2.5,,
  
-[[gallery size="medium"]] +{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_pm.png?700  }} 
-1A3c_EM_PM.png +{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_pm10.png?700 }}
-1A3c_EM_PM10.png +
-[[/gallery]]+
  
 Due to fuel-sulphur legislation, the trend of **sulphur dioxide** emissions follows not only the trend in fuel consumption but also reflects the impact of regulated fuel-qualities. Due to fuel-sulphur legislation, the trend of **sulphur dioxide** emissions follows not only the trend in fuel consumption but also reflects the impact of regulated fuel-qualities.
 For the years as of 2005, sulphur emissions from diesel combustion have decreased so strongly, that the over-all trend shows a slight increase again due to the now dominating contribution of sulphur from the use of solid fuels. For the years as of 2005, sulphur emissions from diesel combustion have decreased so strongly, that the over-all trend shows a slight increase again due to the now dominating contribution of sulphur from the use of solid fuels.
  
-[[gallery size="medium"]] +{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_so2.png?700 }}
-1A3c_EM_SO2.png +
-[[/gallery]]+
  
 Regarding **heavy metals**, emissions from combustion of diesel oil and from abrasion and wear are estimated from tier1 default emission factors.  Regarding **heavy metals**, emissions from combustion of diesel oil and from abrasion and wear are estimated from tier1 default emission factors. 
 Therefore, the emission trends reflect the development of diesel use and - for copper, chromium and nickel emissions resulting from the abrasion & wear of contact line and braking systems - the annual transport performance (see description of activity data above). Therefore, the emission trends reflect the development of diesel use and - for copper, chromium and nickel emissions resulting from the abrasion & wear of contact line and braking systems - the annual transport performance (see description of activity data above).
  
-[[gallery size="medium"]] +{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_cd.png?700 }} 
-1A3c_EM_Cu.png +{{ :sector:energy:fuel_combustion:transport:railways:1a3c_em_cu.png?700 }}
-1A3c_EM_Cd.png +
-[[/gallery]]+
  
-===== Recalculations =====+\\
  
 +===== Recalculations =====
  
 Given the revised NEB 2018, both the**activity data** fo diesel oil and the annual amounts of blended biodiesel were revised accordingly. Given the revised NEB 2018, both the**activity data** fo diesel oil and the annual amounts of blended biodiesel were revised accordingly.
Line 187: Line 174:
 ^ relative change                  0,00% |      0,00% |      0,00% |      0,02% |      0,03% |      0,04% |      0,04% |      0,06% |      0,05% |      0,06% |      0,05% |      0,04% |      0,05% |      0,05% |      0,04% |      0,03% |     -13,6% | ^ relative change                  0,00% |      0,00% |      0,00% |      0,02% |      0,03% |      0,04% |      0,04% |      0,06% |      0,05% |      0,06% |      0,05% |      0,04% |      0,05% |      0,05% |      0,04% |      0,03% |     -13,6% |
  
-    +Due to the routine revision of the TREMOD model [(KNOERR2020b)], tier2 **emission factors** changed for recent years. 
- +
- +
-Due to the routine revision of the TREMOD model [((bibcite 5))], tier2 **emission factors** changed for recent years. +
 Here, the revision results mainly from the consideration of revised NCvs for diesel oil as provided by the AGEB. Here, the revision results mainly from the consideration of revised NCvs for diesel oil as provided by the AGEB.
  
 __Table 6: Revised country-specific emission factors for diesel fuels, in kg/TJ__ __Table 6: Revised country-specific emission factors for diesel fuels, in kg/TJ__
-                                                          |  **2013**  |  **2014**  |  **2015**  |  **2016**  |  **2017**  | **2018** +                                                                        |  **2013**  |  **2014**  |  **2015**  |  **2016**  |  **2017**  | **2018** 
-| **Nitrogen oxides - NO,,x,,**                                                                                                    ||||||| +| **Nitrogen oxides - NO<sub>x</sub>**                                                                                                           ||||||| 
-^ Submission 2020                                           |       41,9 |       41,2 |       38,5 |       38,2 |       37,2 |      35,2 | +^ Submission 2020                                                         |       41,9 |       41,2 |       38,5 |       38,2 |       37,2 |      35,2 | 
-^ Submission 2019                                           |       42,2 |       41,2 |       38,5 |       38,2 |       37,2 |      35,9 | +^ Submission 2019                                                         |       42,2 |       41,2 |       38,5 |       38,2 |       37,2 |      35,9 | 
-^ absolute change                                           |      -0,24 |       0,00 |       0,00 |       0,01 |       0,01 |     -0,68 | +^ absolute change                                                         |      -0,24 |       0,00 |       0,00 |       0,01 |       0,01 |     -0,68 | 
-^ relative change                                           |     -0,56% |      0,00% |      0,00% |      0,03% |      0,02% |    -1,89% | +^ relative change                                                         |     -0,56% |      0,00% |      0,00% |      0,03% |      0,02% |    -1,89% | 
-| **Non-methane volatile organic compounds - NMVOC**                                                                               ||||||| +| **Non-methane volatile organic compounds - NMVOC**                                                                                             ||||||| 
-^ Submission 2020                                           |        899 |        886 |        826 |        801 |        775 |       747 | +^ Submission 2020                                                         |        899 |        886 |        826 |        801 |        775 |       747 | 
-^ Submission 2019                                           |        899 |        886 |        826 |        801 |        775 |       748 | +^ Submission 2019                                                         |        899 |        886 |        826 |        801 |        775 |       748 | 
-^ absolute change                                           |       0,54 |       0,00 |       0,00 |       0,02 |      -0,03 |     -1,38 | +^ absolute change                                                         |       0,54 |       0,00 |       0,00 |       0,02 |      -0,03 |     -1,38 | 
-^ relative change                                           |      0,06% |      0,00% |      0,00% |      0,00% |      0,00% |    -0,18% | +^ relative change                                                         |      0,06% |      0,00% |      0,00% |      0,00% |      0,00% |    -0,18% | 
-| **Particulate matter - PM** (PM,,2.5,, = PM,,10,, = TSP)                                                                         ||||||| +| **Particulate matter - PM** (PM<sub>2.5</sub> = PM<sub>10</sub> = TSP)                                                                         ||||||| 
-^ Submission 2020                                           |       14,6 |       14,3 |       13,3 |       13,1 |       12,4 |      11,7 | +^ Submission 2020                                                         |       14,6 |       14,3 |       13,3 |       13,1 |       12,4 |      11,7 | 
-^ Submission 2019                                           |       14,7 |       14,3 |       13,3 |       13,1 |       12,4 |      11,8 | +^ Submission 2019                                                         |       14,7 |       14,3 |       13,3 |       13,1 |       12,4 |      11,8 | 
-^ absolute change                                           |      -0,05 |       0,00 |       0,00 |       0,00 |       0,00 |     -0,07 | +^ absolute change                                                         |      -0,05 |       0,00 |       0,00 |       0,00 |       0,00 |     -0,07 | 
-^ relative change                                           |     -0,31% |      0,00% |      0,00% |      0,01% |      0,00% |    -0,57% | +^ relative change                                                         |     -0,31% |      0,00% |      0,00% |      0,01% |      0,00% |    -0,57% | 
-| **Black carbon - BC**                                                                                                            ||||||| +| **Black carbon - BC**                                                                                                                          ||||||| 
-^ Submission 2020                                           |       9,52 |       9,29 |       8,65 |       8,48 |       8,05 |      7,60 | +^ Submission 2020                                                         |       9,52 |       9,29 |       8,65 |       8,48 |       8,05 |      7,60 | 
-^ Submission 2019                                           |       9,55 |       9,29 |       8,65 |       8,48 |       8,05 |      7,64 | +^ Submission 2019                                                         |       9,55 |       9,29 |       8,65 |       8,48 |       8,05 |      7,64 | 
-^ absolute change                                           |      -0,03 |       0,00 |       0,00 |       0,00 |       0,00 |     -0,04 | +^ absolute change                                                         |      -0,03 |       0,00 |       0,00 |       0,00 |       0,00 |     -0,04 | 
-^ relative change                                           |     -0,31% |      0,00% |      0,00% |      0,01% |      0,00% |    -0,57% | +^ relative change                                                         |     -0,31% |      0,00% |      0,00% |      0,01% |      0,00% |    -0,57% | 
-| **Carbon monoxide - CO**                                                                                                         ||||||| +| **Carbon monoxide - CO**                                                                                                                       ||||||| 
-^ Submission 2020                                           |        101 |       98,9 |       94,7 |       93,3 |       92,6 |      88,5 | +^ Submission 2020                                                         |        101 |       98,9 |       94,7 |       93,3 |       92,6 |      88,5 | 
-^ Submission 2019                                           |        101 |       98,9 |       94,7 |       93,3 |       92,6 |      89,6 | +^ Submission 2019                                                         |        101 |       98,9 |       94,7 |       93,3 |       92,6 |      89,6 | 
-^ absolute change                                           |      -0,63 |       0,00 |       0,00 |       0,02 |       0,01 |     -1,04 | +^ absolute change                                                         |      -0,63 |       0,00 |       0,00 |       0,02 |       0,01 |     -1,04 | 
-^ relative change                                           |     -0,62% |      0,00% |      0,00% |      0,03% |      0,01% |    -1,16% |+^ relative change                                                         |     -0,62% |      0,00% |      0,00% |      0,03% |      0,01% |    -1,16% |
  
  
-<WRAP center round tip 60%>+<WRAP center round info 60%>
 For more information on recalculated emission estimates for Base Year and 2018, please see the pollutant-specific recalculation tables following chapter [[general:recalculations:start | 8.1 - Recalculations]]. For more information on recalculated emission estimates for Base Year and 2018, please see the pollutant-specific recalculation tables following chapter [[general:recalculations:start | 8.1 - Recalculations]].
 </WRAP> </WRAP>
Line 228: Line 212:
 ===== Uncertainties ===== ===== Uncertainties =====
  
-Uncertainty estimates for **activity data** of mobile sources derive from research project FKZ 360 16 023 (title: "Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland") carried out by Knörr et al. (2009) [((bibcite 7))].+Uncertainty estimates for **activity data** of mobile sources derive from research project FKZ 360 16 023 (title: "Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland") carried out by Knörr et al. (2009) [(KNOERR2009)].
  
 ===== Planned improvements =====  ===== Planned improvements ===== 
Line 240: Line 224:
 The EF provided in [((bibcite 5))] represent summatory values for (i) the fuel's and (ii) the lubricant's heavy-metal content as well as (iii) engine wear. Here, there might be no heavy metals contained in the biofuels. But since the specific shares of (i), (ii) and (iii) cannot be separated, and since the contributions of lubricant and engine wear might be dominant, the same emission factors are applied to biodiesel. The EF provided in [((bibcite 5))] represent summatory values for (i) the fuel's and (ii) the lubricant's heavy-metal content as well as (iii) engine wear. Here, there might be no heavy metals contained in the biofuels. But since the specific shares of (i), (ii) and (iii) cannot be separated, and since the contributions of lubricant and engine wear might be dominant, the same emission factors are applied to biodiesel.
  
-------+[(AGEB2020> AGEB (2020): Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: https://ag-energiebilanzen.de/7-0-Bilanzen-1990-2018.html, Köln & Berlin, 2020.)] 
 +[(MWV2020> MWV (2020): Association of the German Petroleum Industry (Mineralölwirtschaftsverband, MWV): Annual Report 2018, page 65, Table 'Sektoraler Verbrauch von Dieselkraftstoff 2012-2018'; URL: https://www.mwv.de/wp-content/uploads/2020/09/MWV_Mineraloelwirtschaftsverband-e.V.-Jahresbericht-2020-Webversion.pdf, Berlin, 2020.)] 
 +[(HEDEL2012> Hedel, R., & Kunze, J. (2012): Recherche des jährlichen Kohleeinsatzes in historischen Schienenfahrzeugen seit 1990. Probst & Consorten Marketing-Beratung. Dresden, 2012.)] 
 +[(ILLICHMANN2016>  Illichmann, S. (2016): Recherche des Festbrennstoffeinsatzes historischer Schienenfahrzeuge in Deutschland 2015, Probst & Consorten Marketing-Beratung. Study carried out for UBA; FKZ 363 01 392; not yet published; Dresden, 2016.)] 
 +[(KNOERR2020a> Knörr et al. (2019a): Knörr, W., Heidt, C., Gores, S., & Bergk, F.: ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Fortschreibung des Daten- und Rechenmodells: Energieverbrauch und Schadstoffemissionen des motorisierten Verkehrs in Deutschland 1960-2035, sowie TREMOD, im Auftrag des Umweltbundesamtes, Heidelberg & Berlin, 2020. )] 
 +[(EMEPEEA2019> EMEP/EEA (2019): EMEP/EEA air pollutant emission inventory guidebook 2019, https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-c-railways/view; Copenhagen, 2019.)] 
 +[(RENTZ2008> Rentz et al. (2008): Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des Umweltbundesamtes, FKZ 205 67 444, UBA Texte | 01/2008, January 2008 - URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer )] 
 +[(KNOERR2009> Knörr et al. (2009): Knörr, W., Heldstab, J., & Kasser, F.: Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland; final report; URL: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3937.pdf, FKZ 360 16 023, Heidelberg & Zürich, 2009.)]
  
-[[bibliography]] 
-: 1 : AGEB (2019): Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: https://ag-energiebilanzen.de/7-0-Bilanzen-1990-2017.html, Köln & Berlin, 2019. 
-: 2 : MWV (2019): Association of the German Petroleum Industry (Mineralölwirtschaftsverband, MWV): Annual Report 2018, page 65, Table 'Sektoraler Verbrauch von Dieselkraftstoff 2012-2016'; URL: https://www.mwv.de/wp-content/uploads/2016/06/180830_MWV_Jahresbericht-2018_RZ_Web_es_small.pdf, Berlin, 2019. 
-: 3 : Hedel, R., & Kunze, J. (2012): Recherche des jährlichen Kohleeinsatzes in historischen Schienenfahrzeugen seit 1990. Probst & Consorten Marketing-Beratung. Dresden, 2012. 
-: 4 : Illichmann, S. (2016): Recherche des Festbrennstoffeinsatzes historischer Schienenfahrzeuge in Deutschland 2015, Probst & Consorten Marketing-Beratung. Study carried out for UBA; FKZ 363 01 392; not yet published; Dresden, 2016. 
-: 5 : Knörr et al. (2019a): Knörr, W., Heidt, C., Gores, S., & Bergk, F.: ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Fortschreibung des Daten- und Rechenmodells: Energieverbrauch und Schadstoffemissionen des motorisierten Verkehrs in Deutschland 1960-2035, sowie TREMOD 5.81, im Auftrag des Umweltbundesamtes, Heidelberg & Berlin, 2019. 
-: 6 : EMEP/EEA (2019): EMEP/EEA air pollutant emission inventory guidebook 2019, https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-c-railways/view; Copenhagen, 2019. 
-: 7 : Rentz et al. (2008): Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des Umweltbundesamtes, FKZ 205 67 444, UBA Texte | 01/2008, January 2008 - URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer 
-: 7 : Knörr et al. (2009): Knörr, W., Heldstab, J., & Kasser, F.: Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland; final report; URL: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3937.pdf, FKZ 360 16 023, Heidelberg & Zürich, 2009. 
-[[/bibliography]]