meta data for this page
  •  

This is an old revision of the document!


1.A.3.b iv - Road Transport: Mopeds & Motorcycles

Short description

In sub-categories 1.A.3.b iv - Road Transport: Mopeds & Motorcycles emissions from fuel combustion in motorised two-wheelers are reported.

Category Code Method AD EF
1.A.3.b iv T1, T3 NS, M CS, M, D
Key Category SO₂ NOₓ NH₃ NMVOC CO BC Pb Hg Cd Diox PAH HCB TSP PM₁₀ PM₂ ₅
1.A.3.b iv -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- - -/- -/- -/-

Methodology

Activity data

Specific consumption data for mopeds and motorcycles is generated within the TREMOD model (Knörr, 2020a) 1).

The following table provides an overview of annual amounts of gasoline fuels consumed by motorized two-wheelers in Germany.

Table 1: Annual fuel consumption of mopeds and motorcycles, in terajoules

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
MOPEDS
Gasoline
Biogasoline
Ʃ Mopeds
MOTORCYCLES
Gasoline
Biogasoline
Ʃ Motorcycles
MOTORIZED 2-WHEELERS: Mopeds & Motorcycles
Gasoline
Biogasoline
Ʃ 1.A.3.b iv

source: TREMOD 6.02 2)

For information on mileage, please refer to sub-chapters on emissions from tyre & brake wear and road abrasion.

Emission factors

The majority of emission factors for exhaust emissions from road transport are taken from the 'Handbook Emission Factors for Road Transport' (HBEFA, version 4.1) 3) where they are provided on a tier3 level mostly and processed within TREMOD 4).

However, it is not possible to present these highly specific tier3 values in a comprehendible way here.

[!– the following table provides a set of fuel-specific implied emission factors (ratio of total emissions per pollutant and total annual consumption.

Table 2: Annual country-specific implied emission factors1, in kg/TJ

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
NH3 1.21 1.25 1.30 1.33 1.34 1.33 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34
NMVOC2 2,415 1,636 1,456 1,322 1,303 1,315 1,287 1,252 1,200 1,163 1,134 1,086 1,045 1,003 983 954
NOx 183 198 186 175 171 179 173 167 163 159 155 151 148 146 143 140
SO2 15.11 8.36 3.25 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
CO 12,126 12,427 11,872 10,595 10,045 9,817 9,436 9,036 8,693 8,352 8,028 7,695 7,369 7,066 6,766 6,488
PM2.5 NA 63.7 42.7 39.9 38.8 40.0 38.1 36.3 34.2 33.0 32.3 30.7 29.3 27.8 27.0 25.4
PM10 NA 63.7 42.7 39.9 38.8 40.0 38.1 36.3 34.2 33.0 32.3 30.7 29.3 27.8 27.0 25.4
TSP3 71.0 64.5 42.7 39.9 38.8 40.0 38.1 36.3 34.2 33.0 32.3 30.7 29.3 27.8 27.0 25.4
BC NA NA 4.98 4.75 4.60 4.71 4.54 4.36 4.16 4.05 3.96 3.81 3.67 3.53 3.45 3.30

1 due to lack of better information: similar EF are applied for fossil and biofuels
2 from fuel combustion only!
3 from 1990 to 1997: also including additional dust from leaded gasoline

–]

With respect to the country-specific emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly. 1)

For heavy-metal (other then lead from leaded gasoline) and PAH exhaust-emissions, default emission factors from the 2019 EMEP Guidebook (EMEP/EEA, 2019) 5) have been applied. Regarding PCDD/F, tier1 EF from (Rentz et al., 2008) 6) are used instead.

Table 3: Overview of applied EMEP/EEA defaults and other tier1 EF

As Cd Cr Cu Hg Ni Pb Se Zn PCDD/F B[a]P B[b]F B[k]F I[…]P PAH 1-4
[g/TJ] [µg/km] [mg/TJ]
0.007 0.005 0.145 0.103 0.200 0.053 0.037 0.005 0.758 0.0000027 192.91 215.88 156.17 234.25 799.21

Table: Outcome of Key Category Analysis

Key Category SO₂ NOₓ NH₃ NMVOC CO BC Pb Hg Cd Diox PAH HCB TSP PM₁₀ PM₂ ₅
1.A.3.b iv -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- - -/- -/- -/-

Carbon monoxide

Non-methane volatile organic compounds

Since 1990, exhaust emissions of NMVOC have decreased due to technical improvements.

Nitrogen oxides

Sulphur dioxide

As for the entire road transport sector, the trends for sulphur dioxide exhaust emissions from two-wheelers shows charcteristics very different from those shown above: Here, the strong dependence on increasing fuel qualities (sulphur content) leads to an cascaded downward trend of SO,,2,, emissions , influenced only slightly by increases in fuel consumption and mileage.

++ Particulate Matter (PM)

Particle emissions result from the comusbtion of gasoline and bioethanol. Here, due to the assumption that nearly all TSP emitted is formed by particles in the PM,,2.5,, range, similar estimates are provided for all three fractions. (Exception: Until 1997, additional TSP emissions from use of leaded gasoline are included.)

Recalculations

Compared to submission 2020, recalculations were carried out due to a routine revision of the TREMOD software and the revision of several National Energy Balances (NEB).

Here, activity data were revised within TREMOD.

Table 4: Revised fuel consumption data, in terajoules

1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
GASOLINE
Submission 2020 23,131 19,972 24,124 23,030 21,811 21,678 20,902 20,202 19,039 18,591 17,555 17,548 17,996 17,777 18,080 18,456
Submission 2019 22,049 16,628 19,184 20,151 20,306 17,167 17,492 17,657 17,384 18,033 17,840 18,540 19,289 18,641 18,609 18,809
absolute change 1,082 3,344 4,940 2,878 1,505 4,511 3,410 2,544 1,655 558 -285 -992 -1,293 -863 -529 -352
relative change 4,91% 20,1% 25,8% 14,3% 7,41% 26,3% 19,5% 14,4% 9,52% 3,09% -1,60% -5,35% -6,71% -4,63% -2,84% -1,87%
BIOGASOLINE
Submission 2020 0 0 0 158 314 293 400 577 736 762 778 752 783 771 785 778
Submission 2019 0 0 0 138 293 232 334 504 672 739 791 795 839 808 808 801
absolute change 0 0 0 20 22 61 65 73 64 23 -13 -43 -56 -37 -23 -23
relative change 0.00 0.00 0.00 14,3% 7,41% 26,3% 19,5% 14,4% 9,52% 3,09% -1,60% -5,35% -6,71% -4,63% -2,84% -2,82%
TOTAL FUEL CONSUMPTION
Submission 2020 23,131 19,972 24,124 23,188 22,125 21,971 21,302 20,779 19,775 19,354 18,336 18,304 18,783 18,554 18,871 19,242
Submission 2019 22,049 16,628 19,184 20,290 20,598 17,399 17,827 18,162 18,056 18,773 18,631 19,335 20,128 19,449 19,417 19,609
absolute change 1,082 3,344 4,940 2,898 1,527 4,572 3,475 2,617 1,719 581 -295 -1,030 -1,345 -895 -545 -368
relative change 4.91% 20.1% 25.8% 14.3% 7.41% 26.3% 19.5% 14.4% 9.52% 3.09% -1.58% -5.33% -6.68% -4.60% -2.81% -1.88%

Due to the variety of tier3 emission factors applied, it is not possible to display any changes in these data sets in a comprehendible way.

For more information on recalculated emission estimates reported for Base Year and 2018, please see the pollutant-specific recalculation tables following chapter 8.1 - Recalculations.

Planned improvements

Besides a routine revision of the underlying model, no specific improvements are planned.

FAQs


1), 2), 4) Knörr et al. (2020a): Knörr, W., Heidt, C., Gores, S., & Bergk, F.: ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Fortschreibung des Daten- und Rechenmodells: Energieverbrauch und Schadstoffemissionen des motorisierten Verkehrs in Deutschland 1960-2035, sowie TREMOD, im Auftrag des Umweltbundesamtes, Heidelberg & Berlin, 2020.
3) Keller et al. (2017): Keller, M., Hausberger, S., Matzer, C., Wüthrich, P., & Notter, B.: Handbook Emission Factors for Road Transport, version 4.1 (Handbuch Emissionsfaktoren des Straßenverkehrs 4.1) URL: http://www.hbefa.net/e/index.html - Dokumentation, Bern, 2017.
5) EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook 2019; https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view; Copenhagen, 2019.
6) Rentz et al., 2008: Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des Umweltbundesamtes, FKZ 205 67 444, UBA Texte | 01/2008, January 2008 - URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer
1)
During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions.