meta data for this page
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
sector:energy:fugitive:oil:start [2021/03/15 09:56] – [Table] decimal is . not , gniffke | sector:energy:fugitive:oil:start [2024/11/06 15:10] (current) – external edit 127.0.0.1 | ||
---|---|---|---|
Line 12: | Line 12: | ||
| 1.B.2.a.v | | 1.B.2.a.v | ||
+ | . | ||
+ | {{page> | ||
- | ==== 1.B.2.a.i - Exploration, | + | ===== 1.B.2.a.i - Exploration, |
- | Emissions from exploration consist of emissions from activities of drilling companies and other actors in the exploration sector. Gas and oil exploration takes place in Germany. According to the BVEG (former WEG) [3], virtually no fugitive emissions occur in connection with drilling operations, since relevant measurements are regularly carried out at well sites (with use of methane sensors in wellhead-protection structures, ultrasound measurements and annulus manometers) and old / decommissioned wells are backfilled and normally covered with concrete caps. | + | Emissions from exploration consist of emissions from activities of drilling companies and other actors in the exploration sector. Gas and oil exploration takes place in Germany. According to the BVEG (former WEG) [(WEG2008)], virtually no fugitive emissions occur in connection with drilling operations, since relevant measurements are regularly carried out at well sites (with use of methane sensors in wellhead-protection structures, ultrasound measurements and annulus manometers) and old / decommissioned wells are backfilled and normally covered with concrete caps. |
^ Activity data ^ Unit ^ 1990 ^ 1995 | ^ Activity data ^ Unit ^ 1990 ^ 1995 | ||
Line 26: | Line 28: | ||
- | Since pertinent measurements are not available for the individual wells involved, a conservative approach is used whereby VOC emissions for wells are calculated on the basis of the share ratio of VOC = 9 NMVOC : 1 CH4, using the default methane factor of the IPCC Guidelines 2006 [4]. | + | Since pertinent measurements are not available for the individual wells involved, a conservative approach is used whereby VOC emissions for wells are calculated on the basis of the share ratio of VOC = 9 NMVOC : 1 CH4, using the default methane factor of the IPCC Guidelines 2006 [(IPCC2006)]. |
^ Source of emission factor | ^ Source of emission factor | ||
Line 37: | Line 39: | ||
- | The emissions from production and processing are measured or calculated by the operators, and the pertinent data is published in the annual reports of the Federal association of the natural gas, oil and geothermal energy industries (BVEG) [2]. The emission factors are determined from the reported emissions and the activity data. | + | The emissions from production and processing are measured or calculated by the operators, and the pertinent data is published in the annual reports of the Federal association of the natural gas, oil and geothermal energy industries (BVEG) [(BVEG)]. The emission factors are determined from the reported emissions and the activity data. |
^ Source of emission factor | ^ Source of emission factor | ||
- | | Crude oil production | + | | Crude oil production |
Transport emissions are tied to activities of logistics companies and of pipeline operators and pipeline networks. After the first treatment, crude oil is transported to refineries. Almost all transport of crude oil takes place via pipelines. Pipelines are stationary and, normally, run underground. In contrast to other types of transport, petroleum transport is not interrupted by handling processes. | Transport emissions are tied to activities of logistics companies and of pipeline operators and pipeline networks. After the first treatment, crude oil is transported to refineries. Almost all transport of crude oil takes place via pipelines. Pipelines are stationary and, normally, run underground. In contrast to other types of transport, petroleum transport is not interrupted by handling processes. | ||
Line 51: | Line 53: | ||
- | For pipelines, the emission factor for inland-waterway tankers has been estimated by experts. The pertinent emission factors have been confirmed by the research project “Determination of emission factors and activity data in areas 1.B.2.a.i through vi” [5]. Since long-distance pipelines are continually monitored and disruptive incidents in such pipelines are very rare [6], emissions occur – in small quantities – only at their transfer points. The emission factor is thus highly conservative. | + | For pipelines, the emission factor for inland-waterway tankers has been estimated by experts. The pertinent emission factors have been confirmed by the research project “Determination of emission factors and activity data in areas 1.B.2.a.i through vi” [(THELOKE2013)]. Since long-distance pipelines are continually monitored and disruptive incidents in such pipelines are very rare [(CECH2017)], emissions occur – in small quantities – only at their transfer points. The emission factor is thus highly conservative. |
The emission factor covers the areas of transfer / injection into pipelines at pumping stations, all infrastructure along pipelines (connections, | The emission factor covers the areas of transfer / injection into pipelines at pumping stations, all infrastructure along pipelines (connections, | ||
Line 61: | Line 63: | ||
- | ==== 1.B.2.a.i v- Refining / storage ==== | + | ===== 1.B.2.a.iv- Refining / storage ===== |
+ | |||
+ | {{ : | ||
Emissions in category 1.B.2.a.iv - Refining / storage consist of emissions from activities of refineries and of refining companies in the petroleum industry. Crude oil and intermediate petroleum products are processed in Germany. For the most part, the companies concerned receive crude oil for refining and processing. To some extent, intermediate petroleum products undergo further processing outside of refineries in processing networks. Such processing takes place in state-of-the-art plants. | Emissions in category 1.B.2.a.iv - Refining / storage consist of emissions from activities of refineries and of refining companies in the petroleum industry. Crude oil and intermediate petroleum products are processed in Germany. For the most part, the companies concerned receive crude oil for refining and processing. To some extent, intermediate petroleum products undergo further processing outside of refineries in processing networks. Such processing takes place in state-of-the-art plants. | ||
Line 67: | Line 71: | ||
Refinery tank storage systems are used to store both crude oil and intermediate and finished petroleum products. They thus differ from non-refinery tank storage systems in terms of both the products they store and the quantities they handle. Tank-storage facilities outside of refineries are used especially for interim storage of heating oil, gasoline and diesel fuel. The storage capacities of storage caverns for petroleum products are listed separately. In light of the ways in which storage caverns are structured, it may be assumed that no emissions of volatile compounds occur. This is taken into account in the emissions calculation. | Refinery tank storage systems are used to store both crude oil and intermediate and finished petroleum products. They thus differ from non-refinery tank storage systems in terms of both the products they store and the quantities they handle. Tank-storage facilities outside of refineries are used especially for interim storage of heating oil, gasoline and diesel fuel. The storage capacities of storage caverns for petroleum products are listed separately. In light of the ways in which storage caverns are structured, it may be assumed that no emissions of volatile compounds occur. This is taken into account in the emissions calculation. | ||
- | Tanks are emptied and cleaned routinely before tank inspections and repairs. In tank cleaning, a distinction is made between crude-oil tanks and product tanks. Because sediments accumulate in crude oil tanks, cleaning these tanks, in comparison to cleaning product tanks, is a considerably more laborious process. The substances in product tanks produce no sediments and thus are cleaned only when the products they contain are changed. In keeping with an assessment of Müller-BBM (2010)[7], the emission factors for storage of crude oil and of petroleum products may be assumed to take the cleaning processes into account. | + | Tanks are emptied and cleaned routinely before tank inspections and repairs. In tank cleaning, a distinction is made between crude-oil tanks and product tanks. Because sediments accumulate in crude oil tanks, cleaning these tanks, in comparison to cleaning product tanks, is a considerably more laborious process. The substances in product tanks produce no sediments and thus are cleaned only when the products they contain are changed. In keeping with an assessment of Müller-BBM (2010)[(MBBM2010)], the emission factors for storage of crude oil and of petroleum products may be assumed to take the cleaning processes into account. |
- | ^ activity data | + | ^ activity data ^ unit |
- | | Quantity of crude oil refined | + | | Quantity of crude oil refined |
- | | Capacity utilisation in refineries | + | | Capacity utilisation in refineries |
- | | Crude-oil-refining capacity in refineries | + | | Crude-oil-refining capacity in refineries |
- | | Tank-storage capacity in refineries and pipeline terminals | + | | Tank-storage capacity in refineries and pipeline terminals |
- | | Storage capacity of tank-storage facilities outside of refineries, including caverns | + | | Storage capacity of tank-storage facilities outside of refineries |
- | | Storage capacity of caverns | + | | Storage capacity of caverns |
**Processing** | **Processing** | ||
- | {{ : | + | The emission factors used for NMVOC, CO, NOₓ and SO₂ were determined by evaluating the emission declarations of the period 2004 through 2016 in the framework of a research project (Bender & von Müller, 2019) [(Bender2019)]. |
- | The emission factors used for NMVOC, CO, NOₓ and SO₂ were determined by evaluating the emission declarations of the period 2004 through 2016 in the framework of a research project (Bender & von Müller, 2019) [8]. | + | |
**Tank-storage facilities in refineries** | **Tank-storage facilities in refineries** | ||
- | In keeping with the results of the research project " | + | In keeping with the results of the research project " |
**Tank-storage facilities outside of refineries** | **Tank-storage facilities outside of refineries** | ||
- | According to Müller-BBM (2010) [7], no emission factors could be derived by evaluating emission declarations for storage systems, which would be representative of individual systems. This is due, according to the same source, to the widely differing emission behaviours of different individual systems. It was possible, however, to form aggregated emission factors. For each relevant group of data, this was done by correlating the sums of all emissions with the sums of all capacities. For non-refinery tank-storage systems, storage of liquid petroleum products can be differentiated from storage of gaseous petroleum products, since the relevant data is suitably differentiated. | + | According to Müller-BBM (2010) [(MBBM2010)], no emission factors could be derived by evaluating emission declarations for storage systems, which would be representative of individual systems. This is due, according to the same source, to the widely differing emission behaviours of different individual systems. It was possible, however, to form aggregated emission factors. For each relevant group of data, this was done by correlating the sums of all emissions with the sums of all capacities. For non-refinery tank-storage systems, storage of liquid petroleum products can be differentiated from storage of gaseous petroleum products, since the relevant data is suitably differentiated. |
**Claus plants** | **Claus plants** | ||
- | The emission factors used for NMVOC, CO, NOₓ und SO₂ were determined by evaluating emission declarations from refineries for the period 2004 through 2016, in the framework of a research project (Bender & von Müller, 2019)[8]. Since no data was available for earlier years, the data obtained this way was used for all years as of 1990. | + | The emission factors used for NMVOC, CO, NOₓ und SO₂ were determined by evaluating emission declarations from refineries for the period 2004 through 2016, in the framework of a research project (Bender & von Müller, 2019)[(Bender2019)]. Since no data was available for earlier years, the data obtained this way was used for all years as of 1990. |
+ | {{ : | ||
^ Source of emission factor | ^ Source of emission factor | ||
- | | Fugitive emissions at refineries | + | | Fugitive emissions at refineries |
- | | Fugitive emissions at refineries | + | | Fugitive emissions at refineries |
- | | Fugitive emissions at refineries | + | | Fugitive emissions at refineries |
- | | Fugitive emissions at refineries | + | | Fugitive emissions at refineries |
- | | Storage and cleaning of crude oil in tank-storage facilities of refineries | + | | Storage and cleaning of crude oil in tank-storage facilities of refineries |
| Storage of liquid petroleum products in tank-storage facilities outside of refineries | | Storage of liquid petroleum products in tank-storage facilities outside of refineries | ||
| Storage of gaseous petroleum products in tank-storage facilities outside of refineries | | Storage of gaseous petroleum products in tank-storage facilities outside of refineries | ||
- | | Claus Plants | + | | Claus Plants |
- | | Claus Plants | + | | Claus Plants |
- | | Claus Plants | + | | Claus Plants |
- | | Claus Plants | + | | Claus Plants |
- | ==== 1.B.2.a.v- Distribution of oil products ==== | + | <WRAP center round info 80%> |
+ | Emissions from storage currently consider all refinery products. It is planed to split those emissions into fuel-related and chemical-product-related emissions. While fuel-related will still be reported under 1.B.2 emissions other then fuels (like naphtha, methanol etc.) will be reported under [[sector: | ||
+ | </ | ||
+ | |||
+ | |||
+ | ===== 1.B.2.a.v- Distribution of oil products | ||
In category 1.B.2.a.v - Distribution of oil products, the emissions from distribution of oil products are described. Petroleum products are transported by ship, product pipelines, railway tanker cars and tanker trucks, and they are transferred from tank to tank. The main sources of NMVOC emissions from petrol distribution as a whole were fugitive emissions from handling and transfer (filling/ | In category 1.B.2.a.v - Distribution of oil products, the emissions from distribution of oil products are described. Petroleum products are transported by ship, product pipelines, railway tanker cars and tanker trucks, and they are transferred from tank to tank. The main sources of NMVOC emissions from petrol distribution as a whole were fugitive emissions from handling and transfer (filling/ | ||
Line 125: | Line 134: | ||
**Transport** | **Transport** | ||
- | Inland-waterway gasoline tankers retain considerable quantities of gasoline vapours in their tanks after their gasoline has been unloaded. When the ships change loads or spend time in port, their tanks have to be ventilated. With such ships being ventilated on average 277 times per year, the quantity of NMVOC emitted in these operations amounts to 336 - 650 t [10]. The highest value in the range is used to calculate the relevant emissions. | + | Inland-waterway gasoline tankers retain considerable quantities of gasoline vapours in their tanks after their gasoline has been unloaded. When the ships change loads or spend time in port, their tanks have to be ventilated. With such ships being ventilated on average 277 times per year, the quantity of NMVOC emitted in these operations amounts to 336 - 650 t [(BAUER2010)]. The highest value in the range is used to calculate the relevant emissions. |
- | About 13 million m³ of gasoline fuel are transported annually in Germany via railway tank cars. Transfer/ | + | About 13 million m³ of gasoline fuel are transported annually in Germany via railway tank cars. Transfer/ |
Line 132: | Line 141: | ||
Significant quantities of fugitive VOC emissions are released into the environment during transfers from tanker vehicles to storage facilities and during refuelling of vehicles. To determine emissions, a standardised emission factor of 1.4 kg/t is used. This value refers to the saturation concentration for hydrocarbon vapours and thus, corresponds to the maximum possible emissions level in the absence of reduction measures. | Significant quantities of fugitive VOC emissions are released into the environment during transfers from tanker vehicles to storage facilities and during refuelling of vehicles. To determine emissions, a standardised emission factor of 1.4 kg/t is used. This value refers to the saturation concentration for hydrocarbon vapours and thus, corresponds to the maximum possible emissions level in the absence of reduction measures. | ||
- | The immission-control regulations issued in 1992 and 1993 (20th BImSchV, 2017; 21st BImSchV, | + | The immission-control regulations issued in 1992 and 1993 (20th BImSchV |
The use of required emissions-control equipment, such as vapour-balancing (20th BImSchV) and vapour-recovery (21st BImSchV) systems, along with the use of automatic monitoring systems (via the amendment of the 21st BImSchV on 6 May 2002), have brought about continual reductions of VOC emissions; the relevant high levels of use of such equipment are shown in the table below (Table 151). | The use of required emissions-control equipment, such as vapour-balancing (20th BImSchV) and vapour-recovery (21st BImSchV) systems, along with the use of automatic monitoring systems (via the amendment of the 21st BImSchV on 6 May 2002), have brought about continual reductions of VOC emissions; the relevant high levels of use of such equipment are shown in the table below (Table 151). | ||
In emissions calculation, | In emissions calculation, | ||
Line 144: | Line 153: | ||
- | In addition, permeation of hydrocarbons occurs in tank hoses. The DIN EN 1360 standard sets a limit of 12 ml / hose meter per day for such permeation. From analysis of measurements, | + | In addition, permeation of hydrocarbons occurs in tank hoses. The DIN EN 1360 standard sets a limit of 12 ml / hose meter per day for such permeation. From analysis of measurements, |
+ | |||
+ | |||
+ | <WRAP center round box 80%> | ||
Number of service stations * number of fuel pumps per service station * number of hoses per fuel pump * hose length * emission factor. | Number of service stations * number of fuel pumps per service station * number of hoses per fuel pump * hose length * emission factor. | ||
- | + | </ | |
**Cleaning of transport vehicles** | **Cleaning of transport vehicles** | ||
Line 153: | Line 166: | ||
Tank interiors are cleaned prior to tank repairs and safety inspections, | Tank interiors are cleaned prior to tank repairs and safety inspections, | ||
The inventory currently covers cleaning of railway tank cars. The residual amounts remaining in railway car tanks after these have been emptied – normally, between 0 and 30 litres (up to several hundred litres in exceptional cases) – are not normally able to evaporate completely. They thus produce emissions when the insides of tanks are cleaned. | The inventory currently covers cleaning of railway tank cars. The residual amounts remaining in railway car tanks after these have been emptied – normally, between 0 and 30 litres (up to several hundred litres in exceptional cases) – are not normally able to evaporate completely. They thus produce emissions when the insides of tanks are cleaned. | ||
- | Each year, some 2,500 cleaning operations are carried out on railway tank cars that transport gasoline. The emissions released, via exhaust air, in connection with cleaning tank cars' interiors amount to about 40,000 kg/a VOC (Joas et al., 2004), p. 34. [11]. | + | Each year, some 2,500 cleaning operations are carried out on railway tank cars that transport gasoline. The emissions released, via exhaust air, in connection with cleaning tank cars' interiors amount to about 40,000 kg/a VOC (Joas et al., 2004), p. 34. [(JOAS2004)]. |
Any additional prevention and reduction measures could affect emissions in this category only slightly. At the same time, emissions can be somewhat further reduced from their current levels via a combination of various technical and organizational measures. Emissions during handling – for example, during transfer to railway tank cars – are produced especially by residual amounts of gasoline that remain after tanks have been emptied. Such left-over quantities in tanks can release emissions via manholes the next time the tanks are filled. | Any additional prevention and reduction measures could affect emissions in this category only slightly. At the same time, emissions can be somewhat further reduced from their current levels via a combination of various technical and organizational measures. Emissions during handling – for example, during transfer to railway tank cars – are produced especially by residual amounts of gasoline that remain after tanks have been emptied. Such left-over quantities in tanks can release emissions via manholes the next time the tanks are filled. | ||
- | Pursuant to the UBA text (Joas et al., 2004), [11] a total of 1/3 of all relevant transports are carried out with railway tank cars. The remaining 2/3 of all transports are carried out by other means – primarily with road tankers. | + | Pursuant to the UBA text (Joas et al., 2004), [(JOAS2004)] a total of 1/3 of all relevant transports are carried out with railway tank cars. The remaining 2/3 of all transports are carried out by other means – primarily with road tankers. |
The 1/3 to 2/3 relationship given by the report is assumed to be also applicable to the emissions occurring in connection with cleaning. Currently, the inventory includes 36,000 kg of NMVOC emissions from cleaning of railway tank cars. Emissions from cleaning of other transport equipment – primarily road tankers – are derived from that figure; they amount to about 70,000 kg NMVOC. | The 1/3 to 2/3 relationship given by the report is assumed to be also applicable to the emissions occurring in connection with cleaning. Currently, the inventory includes 36,000 kg of NMVOC emissions from cleaning of railway tank cars. Emissions from cleaning of other transport equipment – primarily road tankers – are derived from that figure; they amount to about 70,000 kg NMVOC. | ||
- | More-thorough emissions collection upon opening of manholes of railway tank cars (a volume of about 14.6 m³ escapes), along with more thorough treatment of exhaust from cleaning tank interiors, could further reduce VOC emissions. Exhaust cleansing is assumed to be carried out via one-stage active-charcoal adsorption. For an initial load of 1 kg/m³, exhaust concentration levels can be reduced by 99.5 %, to less than 5 g/m³. As a result, the remaining emissions amount to only 1.1 t. This is equivalent to a reduction of about 97 % from the determined level of 36.5 t/a (without adsorption) (Joas et al. (2004), p. 34) [11]. | + | More-thorough emissions collection upon opening of manholes of railway tank cars (a volume of about 14.6 m³ escapes), along with more thorough treatment of exhaust from cleaning tank interiors, could further reduce VOC emissions. Exhaust cleansing is assumed to be carried out via one-stage active-charcoal adsorption. For an initial load of 1 kg/m³, exhaust concentration levels can be reduced by 99.5 %, to less than 5 g/m³. As a result, the remaining emissions amount to only 1.1 t. This is equivalent to a reduction of about 97 % from the determined level of 36.5 t/a (without adsorption) (Joas et al. (2004), p. 34) [(JOAS2004)]. |
- | Generally, the emission factors listed below have been verified by the study (Theloke et al., 2013) [5]. | + | Generally, the emission factors listed below have been verified by the study [(THELOKE2013)]. |
^ **Process responsible for NMVOC emissions** | ^ **Process responsible for NMVOC emissions** | ||
Line 174: | Line 187: | ||
| Transfers from filling-station tanks to vehicle tanks | light heating oil | 0.0063 | | Transfers from filling-station tanks to vehicle tanks | light heating oil | 0.0063 | ||
+ | ===== Recalculations ===== | ||
- | ===== References ===== | + | Please refer to overarching chapter [[sector: |
+ | ===== Planned improvements ===== | ||
+ | |||
+ | Emissions from storage of refinery products will be divided up to fuels (under 1.B) and chemical products (2.B) - please see info box under 1.B.2.a.iv. | ||
+ | ===== References ===== | ||
- | * [1] MWV (2020). Annual report of the Association of the German Petroleum Industry „Jahresbericht 2020“ Click here | ||
- | * [2] BVEG (2019). Annual report of the Association of Oil and Gas Producing "Die E& | ||
- | * [3] WEG (2008). Report of the Association of Oil and Gas Producing " | ||
- | * [4] IPCC (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, | ||
- | * [5] Theloke, J., Kampffmeyer, | ||
- | * [6] Cech, M., Davis, P., Gambardella, | ||
- | * [7] Müller-BBM (2010). UBA research project No. 3707 42 103/ 01, Aufbereitung von Daten der Emissionserklärungen gemäß 11. BImSchV aus dem Jahre 2004 für die Verwendung bei der UNFCC- und UNECE-Berichterstattung - Bereich Lageranlagen (Bericht Nr. M74 244/7, UBA FKZ 3707 42 103/01). Click here | ||
- | * [8] Bender, M., & von Müller, G. (2019). Konsolidierung der Treibhausgasemissionsberechnungen unter der 2. Verpflichtungsperiode des Kyoto-Protokolls und der neuen Klimaschutz-Berichterstattungspflichten an die EU (FKZ 3716 41 107 0). | ||
- | * [9] VDI (2000). VDI-Richtlinie 2440: Emissionsminderung - Mineralölraffinerien, | ||
- | * [10] Bauer, S., Polcher, D. A., & Greßmann, A. (2010). Evaluierung der Anforderungen der 20. BImSchV für Binnentankschiffe im Hinblick auf die Wirksamkeit der Emissionsminderung klimarelevanter Gase (FKZ 3709 45 326). München. | ||
- | * [11] Dr. R. Joas; A. Potrykus; R. Schott; S. Wenzel (2004). " | ||
- | * [12] Haas, W. (2015). Kraftstoffpermeation an Zapfsäulen. | ||
+ | [(MWV> | ||
+ | [(BVEG> | ||
+ | [(WEG2008> | ||
+ | [(IPCC2006> | ||
+ | [(THELOKE2013> | ||
+ | [(CECH2017> | ||
+ | [(MBBM2010> | ||
+ | [(Bender2019> | ||
+ | [(VDI2000> | ||
+ | [(BAUER2010> | ||
+ | [(JOAS2004> | ||
+ | [(HAAS2015> | ||
+ | [(BimSchV20> | ||
+ | [(BimSchV21> |