meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
sector:natural_sources:forest_fires:start [2021/02/12 16:10] – [Methodology] doeringsector:natural_sources:forest_fires:start [2022/09/22 08:57] – Fix link tarakji
Line 74: Line 74:
 β = burning efficiency (fraction burnt) of the above-ground biomass. β = burning efficiency (fraction burnt) of the above-ground biomass.
  
-The data on forest areas burnt for the period 1990 to 2018 have been taken from the German forest fire statistic (BLE, 2020) ((BLE (Bundesanstalt für Landwirtschaft und Ernährung), 2020: Waldbrandstatistik der Bundesrepublik Deutschland für das Jahr 2019, Bonn: 21 S.)) managed by the Federal Agency for Agriculture and Food. The mean above-ground biomass was derived for each year by linear extrapolation and interpolation between the+The data on forest areas burnt for the period 1990 to 2018 have been taken from the German forest fire statistic (BLE, 2020) ((BLE (Bundesanstalt für Landwirtschaft und Ernährung), (2020, 25. Juni), 2020: Waldbrandstatistik der Bundesrepublik Deutschland für das Jahr 2019, Bonn: 21 p. Retrieved July 2020, https://www.ble.de/DE/BZL/Daten-Berichte/Wald/wald_node.html)) managed by the Federal Agency for Agriculture and Food. The mean above-ground biomass was derived for each year by linear extrapolation and interpolation between the
      * German National Forest Inventorys of 1987, 2002, 2012 (Bundeswaldinventuren 1987, 2002, 2012),       * German National Forest Inventorys of 1987, 2002, 2012 (Bundeswaldinventuren 1987, 2002, 2012), 
-     the inventory study 2008 (([https://www.thuenen.de/en/wo/projects/forest-monitoring/greenhouse-gas-inventory-for-forests/inventory-study-2008/ Inventurstudie 2008])) and, +     [[https://www.thuenen.de/en/institutes/forest-ecosystems/projects/forest-monitoring/greenhouse-gas-inventory-for-forests/inventory-study-2008|the inventory study 2008]and, 
-  * the carbon inventory 2017 (Kohlenstoffinventur 2017)(([https://www.thuenen.de/en/wo/projects/forest-monitoring/greenhouse-gas-inventory-for-forests/carbon-inventory-2017))+  * [[https://www.thuenen.de/en/institutes/forest-ecosystems/projects/forest-monitoring/greenhouse-gas-inventory-for-forests/carbon-inventory-2017|the carbon inventory 2017]]
    
 Pursuant to König (2007) ((König, H.-C., 2007. Waldbrandschutz - Kompendium für Forst und Feuerwehr. 1. Fachverlag Matthias Grimm, Berlin, 197 S.)), 80% of the forest fires in Germany are surface fires and 20% crown fires. In accordance to the IPCC Good Practice Guidance for LULUCF (2003) a burning efficiency of 0.15 was used for surface fires and an efficiency of 0.45 was used for crown fires.  Pursuant to König (2007) ((König, H.-C., 2007. Waldbrandschutz - Kompendium für Forst und Feuerwehr. 1. Fachverlag Matthias Grimm, Berlin, 197 S.)), 80% of the forest fires in Germany are surface fires and 20% crown fires. In accordance to the IPCC Good Practice Guidance for LULUCF (2003) a burning efficiency of 0.15 was used for surface fires and an efficiency of 0.45 was used for crown fires. 
  
-The emissions for the pollutants were calculated by multiplying the mass of carbon with the respective emission factors from table 3-3 (EMEP/EEA, 2019)((EMEP/EEA, 2019: [*https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/11-natural-sources/11-b-forest-fires/view])).+The emissions for the pollutants were calculated by multiplying the mass of carbon with the respective emission factors from table 3-3 (EMEP/EEA, 2019)((EMEP/EEA, 2019: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/11-natural-sources/11-b-forest-fires/view)).
  
 For the calculation of particulate emissions (TSP, PM<sub>10</sub> and PM<sub>2.5</sub>) the burnt biomass was multiplied with the respective emission factors from table 3-5 (EMEP/EEA, 2019). Those particulate emission factors have been estimated by averaging the emission factors from the US Environmental Protection Agency (USEPA, 1996) ((USEPA, 1996: Compilation of Air Pollutant Emission Factors Vol.1. Stationary, Point and Area Sources. Report AP-42, fifth edition)) methodology, since no better information is available. Those emission factors are assumed to be the same for all types of forest.  For the calculation of particulate emissions (TSP, PM<sub>10</sub> and PM<sub>2.5</sub>) the burnt biomass was multiplied with the respective emission factors from table 3-5 (EMEP/EEA, 2019). Those particulate emission factors have been estimated by averaging the emission factors from the US Environmental Protection Agency (USEPA, 1996) ((USEPA, 1996: Compilation of Air Pollutant Emission Factors Vol.1. Stationary, Point and Area Sources. Report AP-42, fifth edition)) methodology, since no better information is available. Those emission factors are assumed to be the same for all types of forest.