1.A.4.b ii - Residential: Household and Gardening: Mobile

Short description

Under sub-category 1.A.4.b ii - Residential: Mobile Sources in Households and Gardening fuel combustion activities and resulting emissions from combustion engine driven devices such as motor saws, lawn mowers and small leisure boats are being reported.

Method AD EF Key Category Analysis
T1, T2 NS, M CS, M, D L/-: CO

image Lawnmower.PNG size="small"

Methodology

Activity data

Activity data are taken from annual fuel delieveries data provided in line 66: 'Households' of the National Energy Balances (NEB) for Germany (AGEB, 2022) 1).

Table 1: Sources for consumption data in 1.A.4.b ii

Relevant years Data Source
through 1994 AGEB - National Energy Balance, line 79: Households
since 1995 AGEB - National Energy Balance, line 66: Households

Here, given the rare statistics on sold machinery, these activity data is of limited quality only (no annual but cascaded trend).

As the NEB only provides primary activity data for total biomass used in 'households', but does not distinguish into specific biofuels, consumption data for bioethanol used in NFR 1.A.4.b ii are calculated by applying Germany's official annual shares of biogasoline blended to fossil gasoline.

Please note: Data on gasoline used in households as provided in the National Energy Balances represents a “residual item” following the allocation of the majority of this fuel to road and military vehicles. Here, fuel sales to road vehicles might also include gasoline acquired on filling stations but used for household equipment.

Due to these reasons, activity data for gasoline consumption in households machinery and, hence, several emission estimates show no realistic trend but a stepwise development with significant jumps.

Table 2: Annual over-all fuel deliveries to residential mobile sources, in terajoules

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Gasoline 2,177 2,395 2,395 2,395 3,379 4,069 3,995 3,720 3,946 4,228 4,228 4,228 4,228 4,228 3,186 3,099
Biogasoline 16.5 131 167 177 159 172 183 184 178 190 182 145 147
Ʃ 1.A.4.b ii 2,177 2,395 2,395 2,411 3,510 4,236 4,172 3,879 4,118 4,411 4,412 4,406 4,418 4,410 3,332 3,247

source: AGEB, 2020 2) and TREMOD MM 3)

These primary activity data can be distributed onto 2- and 4-stroke engines used in households via annual shares from Knörr et al. (2022b) 4).

Table 3: Annual shares of 2- and 4-stroke engines

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
2-Stroke Machinery 25.0% 43.7% 58.4% 61.8% 66.0% 66.4% 67.0% 67.3% 67.3% 67.3% 67.3% 67.3% 67.3% 67.2% 67.2% 67.2%
4-Stroke Machinery 63.7% 44.2% 29.5% 27.0% 23.3% 22.7% 21.6% 20.8% 20.5% 20.3% 20.0% 19.8% 19.6% 19.5% 19.4% 19.2%
2-Stroke Boats 10.1% 10.3% 8.80% 5.61% 2.16% 2.19% 2.23% 2.28% 2.31% 2.34% 2.37% 2.39% 2.40% 2.41% 2.43% 2.45%
4-Stroke Boats 1.2% 1.8% 3.3% 5.6% 8.5% 8.8% 9.2% 9.5% 9.8% 10.1% 10.3% 10.5% 10.7% 10.9% 11.0% 11.1%
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

source: TREMOD MM 5)

Table 4: Resulting estimates for fuel consumption in 2- and 4-stroke engines, in terajoules

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
2-stroke machinery
Gasoline 545 1,046 1,400 1,480 2,231 2,700 2,677 2,505 2,656 2,845 2,844 2,844 2,844 2,842 2,140 2,084
Biogasoline 0.00 0.00 0.00 10.2 86.2 111 119 107 116 123 124 120 128 123 97.7 99.1
4-stroke machinery
Gasoline 1,387 1,059 705 646 787 922 861 775 810 857 847 838 830 824 617 596
Biogasoline 0.00 0.00 0.00 4.44 30.4 37.8 38.2 33.2 35.2 37.2 36.8 35.3 37.3 35.5 28.2 28.3
2-stroke boats
Gasoline 25.6 43.0 79.2 134 287 359 367 355 388 428 437 446 453 460 351 344
Biogasoline 0.00 0.00 0.00 0.92 11.1 14.7 16.3 15.2 16.9 18.5 19.0 18.8 20.4 19.8 16.0 16.4
4-stroke boats
Gasoline 220 248 211 134 73.1 88.9 89.2 84.7 91.3 99.1 100 101 102 102 77.4 75.8
Biogasoline 0.00 0.00 0.00 0.92 2.82 3.65 3.95 3.63 3.97 4.30 4.35 4.25 4.57 4.40 3.53 3.61
Ʃ 1.A.4.b ii 2,177 2,395 2,395 2,411 3,510 4,236 4,172 3,879 4,118 4,411 4,412 4,406 4,418 4,410 3,332 3,247

Emission factors

The emission factors used here are of rather different quality: For all main pollutants, carbon monoxide and particulate matter, annually changing values computed within TREMOD-MM (Knörr et al. (2022b)) 6) are used, representing the development of mitigation technologies and the effect of fuel-quality legislation.

Here, as no such specific EF are available for biofuels, the values used for gasoline are applied to bioethanol, too.

For lead (Pb) from leaded gasoline and corresponding TSP emissions, additional emissions are are calculated from 1990 to 1997 based upon contry-specific emission factors from 7).)

Table 4: Annual country-specific emission factors from TREMOD MM1, in kg/TJ

1990 1995 2000 2005 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
4-stroke machinery
NH31 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
NMVOC - exhaust1, 2 727 819 809 790 806 803 799 795 791 786 782 777 772 765 751 731
NMVOC - evaporation1, 3 475 1.289 1.604 1.650 1.647 1.646 1.645 1.643 1.640 1.638 1.634 1.631 1.628 1.624 1.620 1.616
NOx1 51.1 85.3 103 108 122 124 126 129 131 132 133 134 135 134 129 123
SOx1 10.1 8.27 3.22 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
BC 2, 5 0.31 0.27 0.24 0.23 0.24 0.25 0.25 0.25 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26
PM2.52, 4 6.30 5.46 4.85 4.62 4.87 4.94 5.00 5.06 5.11 5.15 5.19 5.22 5.24 5.25 5.25 5.26
PM10, 6.30 5.46 4.85 4.62 4.87 4.94 5.00 5.06 5.11 5.15 5.19 5.22 5.24 5.25 5.25 5.26
TSP - exhaust2 6.30 5.46 4.85 4.62 4.87 4.94 5.00 5.06 5.11 5.15 5.19 5.22 5.24 5.25 5.25 5.26
TSP - leaded fuel6 2.35 0.82
CO 1 40.044 32.179 28.352 27.158 27.988 28.274 28.551 28.808 29.042 29.245 29.413 29.544 29.642 29.609 29.252 28.653
2-stroke machinery
NH31 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
NMVOC - exhaust1, 2 6.121 5.907 5.877 5.813 5.829 5.367 4.323 3.632 3.471 3.314 3.163 3.024 2.899 2.796 2.718 2.656
NMVOC - evaporation1, 3 1.387 1.128 510 392 280 288 305 317 321 325 328 331 334 335 337 340
NOx1 19.8 25.7 36.3 53.4 63.8 61.9 57.1 55.0 55.9 56.8 57.5 58.2 58.7 59.2 59.8 60.2
SOx1 10.1 8.27 3.22 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
BC 2, 4 6.91 6.13 5.13 4.93 4.79 4.93 5.22 5.41 5.49 5.55 5.61 5.67 5.71 5.75 5.77 5.80
PM2.52, 4 138 123 103 99 96 99 104 108 110 111 112 113 114 115 115 116
PM10 138 123 103 99 96 99 104 108 110 111 112 113 114 115 115 116
TSP - exhaust2 138 123 103 99 96 99 104 108 110 111 112 113 114 115 115 116
TSP - leaded fuel6 2.35 0.82
CO 1 20.271 18.743 16.255 15.480 14.693 15.061 15.883 16.429 16.610 16.788 16.958 17.115 17.256 17.377 17.474 17.553
4-stroke leisure boats
NH31 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
NMVOC - exhaust1, 2 952 1.036 1.269 1.373 1.212 1.136 1.067 1.003 946 895 849 806 770 740 717 701
NMVOC - evaporation1, 3 28.8 55.3 131 164 202 197 194 190 187 185 183 181 179 177 176 176
NOx1 383 375 353 345 337 338 339 340 341 341 325 299 276 256 237 222
SOx1 10.1 8.27 3.22 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
BC2, 5 0.09 0.05 0.15 0.18 0.27 0.28 0.29 0.31 0.32 0.33 0.34 0.33 0.32 0.31 0.29 0.28
PM2.52, 4 1.74 0.97 3.00 3.57 5.37 5.63 5.89 6.16 6.42 6.65 6.75 6.61 6.41 6.15 5.86 5.55
PM10 1.74 0.97 3.00 3.57 5.37 5.63 5.89 6.16 6.42 6.65 6.75 6.61 6.41 6.15 5.86 5.55
TSP - exhaust2 1.74 0.97 3.00 3.57 5.37 5.63 5.89 6.16 6.42 6.65 6.75 6.61 6.41 6.15 5.86 5.55
TSP - leaded fuel6 2.35 0.82
CO1 30.204 30.817 32.595 33.248 26.208 24.417 22.738 21.186 19.774 18.519 17.352 16.229 15.256 14.476 13.858 13.396
2-stroke leisure boats
NH31 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
NMVOC - exhaust1, 2 5.614 5.674 5.835 5.952 4.254 3.797 3.364 2.960 2.589 2.253 1.931 1.624 1.359 1.134 961 831
NMVOC - evaporation1, 3 159 169 191 204 200 200 200 200 200 200 200 200 200 200 200 200
NOx1 74.4 74.1 73.0 71.9 72.9 73.6 74.5 75.5 76.5 77.5 75.9 71.6 67.5 63.7 59.9 56.4
SOx1 10.1 8.27 3.22 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37
BC 2, 4 21.1 21.1 21.1 21.1 21.6 21.9 22.3 22.7 23.1 23.5 23.9 24.3 24.6 24.9 25.1 25.2
PM2.52, 5 422 422 422 422 432 438 446 454 462 471 479 486 492 498 501 504
PM10 422 422 422 422 432 438 446 454 462 471 479 486 492 498 501 504
TSP - exhaust2 422 422 422 422 432 438 446 454 462 471 479 486 492 498 501 504
TSP - leaded fuel6 2.35 0.82
CO1 15.101 15.160 15.311 15.415 12.700 11.909 11.135 10.389 9.684 9.029 8.433 7.904 7.446 7.060 6.775 6.574
Pb - leaded fuel7 1.471 516

1 due to lack of better information: similar EF are applied for fossil and biofuels
2 from fuel combustion
3 from gasoline evaporation
4 EF(PM2.5) also applied for PM10 and TSP (assumption: > 99% of TSP consists of PM2.5)
5 estimated via a f-BCs as provided in 8), Chapter 1.A.2.g vii, 1.A.4.a ii, b ii, c ii, 1.A.5.b i - Non-road, note to Table 3-1: Tier 1 emission factors for off-road machinery
6 from leaded gasoline (until 1997)

With respect to the emission factors applied for particulate matter, given the circumstances during test-bench measurements, condensables are most likely included at least partly. 9)

For lead (Pb) from leaded gasoline and corresponding TSP emissions, additional emissions are are calculated from 1990 to 1997 based upon contry-specific emission factors from 10).

NOTE: For the country-specific emission factors applied for particulate matter, no clear indication is available, whether or not condensables are included.

For information on the emission factors for heavy-metal and POP exhaust emissions, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources.

Table: Outcome of Key Category Analysis

for: CO
by: Level & Trend

Given the limited quality of gasoline-deliveries data from NEB line 66, the following emission trends are of limited significance only.

Unregulated pollutants (Ammonia, HMs, POPs, ...)

For all unregulated pollutants, emission trends directly follow the trend in fuel consumption.

 annual ammonia emissions

Here, as the emission factors for heavy metals (and POPs) are derived from tier1 default values, the emission's trend is stronlgy influenced by the share of 2-stroke gasoline fuel (containing lube oil with presumably higher HM content) consumed.

Regulated pollutants

For all regulated pollutants, emission trends follow not only the trend in fuel consumption but also reflect the impact of fuel-quality and exhaust-emission legislation. However, especially for CO and NOx, trends are strongly influenced by the changes in annual fuel deliveries as provided in NEB line 66.

 annual carbon monoxide emissions  annual nitrogen oxides emissions

Here, emissions of sulphur oxides follow the step-by-step reduction of sulphur contents in liquid fuels, resulting in a reduction of over 95% since 1990.

 annual sulphur oxides emissions

Particulate matter

Over-all PM emissions are by far dominated by emissions from diesel oil combustion with the falling trend basically following the decline in fuel consumption between 2000 and 2005. Nonetheless, the decrease of the over-all emission trend was and still is amplified by the expanding use of particle filters especially to eliminate soot emissions.

Additional contributors such as the impact of TSP emissions from the use of leaded gasoline (until 1997) have no significant effect onto over-all emission estimates.

Here, as the EF(BC) are estimated via fractions provided in 11), black carbon emissions follow the corresponding emissions of PM2.5.

Recalculations

Compared to Submission 2022, recalcultaions result solely from the revision of the primary activity data provided in line 67 of the NEB 2020.

gasoline biogasoline over-all fuel consumption
Submission 2023 3.186 145 3.332
Submission 2022 4.055 183 4.238
absolute change -869 -37.2 -906
relative change -21.4% -20.3% -21.4%

For pollutant-specific information on recalculated emission estimates for Base Year and 2020, please see the recalculation tables following chapter 8.1 - Recalculations.

Uncertainties

Uncertainty estimates for activity data of mobile sources derive from research project FKZ 360 16 023 (Knörr et al. (2009)) 12): “Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland”.

Uncertainty estimates for emission factors were compiled during the PAREST research project. Here, the final report has not yet been published.

Planned improvements

Besides a routine revision of the TREMOD MM model, no specific improvements are planned.

FAQs

Why are similar EF applied for estimating exhaust heavy metal emissions from both fossil and biofuels?

The EF provided in 13) represent summatory values for (i) the fuel's and (ii) the lubricant's heavy-metal content as well as (iii) engine wear. Here, there might be no heavy metal contained in biofuels. But since the specific shares of (i), (ii) and (iii) cannot be separated, and since the contributions of lubricant and engine wear might be dominant, the same emission factors are applied to biodiesel and bioethanol.


1) AGEB, 2022: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; https://ag-energiebilanzen.de/daten-und-fakten/bilanzen-1990-bis-2020/?wpv-jahresbereich-bilanz=2011-2020, (Aufruf: 23.11.2021), Köln & Berlin, 2022
4), 6), 7) Knörr et al. (2022b): Knörr, W., Heidt, C., Gores, S., & Bergk, F.: ifeu Institute for Energy and Environmental Research (Institut für Energie- und Umweltforschung Heidelberg gGmbH, ifeu): Aktualisierung des Modells TREMOD-Mobile Machinery (TREMOD MM) 2022, Heidelberg, 2022.
8), 10), 11) EMEP/EEA, 2019: EMEP/EEA air pollutant emission inventory guidebook – 2019, Copenhagen, 2019.
9) During test-bench measurements, temperatures are likely to be significantly higher than under real-world conditions, thus reducing condensation. On the contrary, smaller dillution (higher number of primary particles acting as condensation germs) together with higher pressures increase the likeliness of condensation. So over-all condensables are very likely to occur but different to real-world conditions.
12) Knörr et al. (2009): Knörr, W., Heldstab, J., & Kasser, F.: Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland; final report; URL: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3937.pdf, FKZ 360 16 023, Heidelberg & Zürich, 2009.
13) Rentz et al., 2008: Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des Umweltbundesamtes, FKZ 205 67 444, UBA Texte | 01/2008, January 2008 - URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer