meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:energy:fuel_combustion:transport:navigation:international_maritime_navigation [2021/04/09 13:01] kotzullasector:energy:fuel_combustion:transport:navigation:international_maritime_navigation [2023/01/17 07:35] (current) – [Recalculations] kotzulla
Line 7: Line 7:
 ^ Category Code    Method                                                                  ||||^  AD                               ||||^  EF                                       ||||| ^ Category Code    Method                                                                  ||||^  AD                               ||||^  EF                                       |||||
 | 1.A.3.d i (i)  |  T1, T2, T3                                                              |||||  NS, M                            |||||  CS, M                                 ||||| | 1.A.3.d i (i)  |  T1, T2, T3                                                              |||||  NS, M                            |||||  CS, M                                 |||||
-^  Key Category   ^  SO₂                                        ^  NOₓ   NH₃   NMVOC  ^  CO  ^  BC     ^  Pb  ^  Hg  ^  Cd  ^  Diox  ^  PAH       ^  HCB  ^  TSP  ^  PM₁₀   PM₂ ₅  ^+^  Key Category  ^  SO<sub>2</sub>     ^  NO<sub>x</sub>   NH<sub>3</sub>   NMVOC  ^  CO   ^  BC   ^  Pb   ^  Hg   ^  Cd   ^  Diox  ^  PAH  ^  HCB  ^  TSP  ^  PM<sub>10</sub>   PM<sub>2.5</sub>  ^
 | 1.A.3.d i (i)  |  //not included in key category analysis//                                                                                                             ||||||||||||||| | 1.A.3.d i (i)  |  //not included in key category analysis//                                                                                                             |||||||||||||||
  
Line 13: Line 13:
  
 \\ \\
- 
  
 ===== Methodology ===== ===== Methodology =====
Line 19: Line 18:
 ==== Activity data ==== ==== Activity data ====
  
-Primary fuel delivery data (primary activity data, PAD) for //international maritime navigation// is included in line 6 - 'International Deep-Sea Bunkers' of the National Energy Balances (NEB) (AGEB, 2019) [((bibcite 1))] together with respective data for IMO-registered ships used in //national maritime transport// (see [[[1-a-3-d-ii-a-national-maritime-navigation | 1.A.3.d ii (a) ]]]), //fishing// (see [[[1-a-4-c-iii-fishing-mobile | 1.A.4.c iii ]]]) and //military navigation// (see [[[1-a-5-b-iii-emissions-from-military-navigation | 1.A.5.b iii ]]]).+Primary fuel delivery data (primary activity data, PAD) for //international maritime navigation// is included in line 6 - 'International Deep-Sea Bunkers' of the National Energy Balances (NEB) (AGEB, 2021) [(AGEB2021)] together with respective data for IMO-registered ships used in //national maritime transport// (see 1.A.3.d ii (a)), //fishing// (see NFR 1.A.4.c iii) and //military navigation// (see NFR 1.A.5.b iii).
  
 The AD applied for //international maritime navigation// therefore represents the remains of primary fuel delivery data from NEB line 6 minus the modelled consumption data estimated for non-IMO ships in //1.A.3.d ii (a)//, //1.A.4.c iii// and //1.A.5.b iii//: The AD applied for //international maritime navigation// therefore represents the remains of primary fuel delivery data from NEB line 6 minus the modelled consumption data estimated for non-IMO ships in //1.A.3.d ii (a)//, //1.A.4.c iii// and //1.A.5.b iii//:
  
-^                                                                                                                                                                                            ^   ^ +| <WRAP left round info 100%>  AD<sub>1.A.3.d i</sub> = PAD<sub>NEB line 6</sub> - AD<sub>1.A.3.d ii (a) - IMO</sub>  - AD<sub>1.A.4.c iii - IMO</sub> - AD<sub>1.A.5.b iii - IMO</sub>  </WRAP> with \\   * AD<sub>1.A.3.d i</sub> - tier1 activity data for International maritime navigation\\   * PAD<sub>NEB line 6</sub> - primary over-all fuel deliveries data from NEB line 6 - 'International Maritime Bunkers'\\   * AD<sub>1.A.3.d ii (a) - IMO</sub> - tier3 activity data for IMO-registered ships involved in national maritime navigation\\   * AD<sub>1.A.4.c iii - IMO</sub> - tier3 activity data for IMO-registered ships involved in national fishing\\   * AD<sub>1.A.5.b iii - IMO</sub> - tier3 activity data for IMO-registered ships involved in military navigation  |
-|                                                                                                                                                                                            |   | +
-| <WRAP left round info 50%>AD<sub>1.A.3.d i</sub> = PAD<sub>NEB line 6</sub> - AD<sub>1.A.3.d ii (a) - IMO</sub>  - AD<sub>1.A.4.c iii - IMO</sub> - AD<sub>1.A.5.b iii - IMO</sub></WRAP>  |   +
-|                                                                                                                                                                                            |   |+
  
-<WRAP left round info 50%> +As result, activity data can fluctuate strongly from year to year
-AD<sub>1.A.3.d i</sub> = PAD<sub>NEB line 6</sub> - AD<sub>1.A.3.d ii (a) - IMO</sub>  - AD<sub>1.A.4.c iii - IMO</sub> - AD<sub>1.A.5.b iii - IMO</sub> +
-</WRAP>+
  
-\\ +However, this effect can be explained with the fact that large ocean-going ships do not need to bunker fuels on every single harbour but can go on for weeks without any additional fuel uptake. 
-\\ +
-\\ +
- +
  
 +This can be further increased with increasing differences in fuel prices. 
  
 __Table 1: Annual fuel consumption, in terajoules__ __Table 1: Annual fuel consumption, in terajoules__
-                    **1990**  |  **1995**  |  **2000**  |  **2005**  |  **2006**  |  **2007**  |  **2008**  |  **2009**  |  **2010**  |  **2011**  |  **2012**  |  **2013**  |  **2014**  |  **2015**  |  **2016**  |  **2017**  |  **2018**  |  **2019**  | +                            ^  1990   ^  1995   ^  2000   ^  2005   ^  2010     2011     2012   ^  2013   ^  2014   ^  2015   ^  2016     2017   ^  2018   ^  2019   ^  2020    2021   ^ 
-^ Diesel Oil             12.748     12.919     13.664     11.993     15.817 |     17.524 |     13.105 |     14.412 |     16.662     15.370     12.594     12.414     13.674     33.088     28.093     22.924     15.213     18.327 +^ Diesel & Light Heating Oil   13,162  13,096  13,709  11,820   16,417   15,020  12,181  11,875  13,801  33,958   32,832  27,463  21,473  20,231 |  13,896 |  20,231 
-^ Heavy fuel oil         68.484     56.323     60.984     78.182     78.257     96.625     96.017 |     85.865     86.934     86.687 |     81.171 |     71.364     67.670 |     57.850     74.837     58.781     39.380     26.601 +^ Heavy fuel oil               76,942  62,066  67,080  83,224   91,169   90,779  85,586  75,559  71,598  57,792   74,807  58,707  39,308  26,565 |  32,253 |  26,565 
-| **Ʃ 1.A.3.d ii**       81.232     69.242     74.648     90.175     94.074    114.149    109.122    100.277    103.596    102.057     93.765     83.778     81.344     90.938    102.930     81.705 ^     54.592 ^     44.928 +| **Ʃ 1.A.3.d i**              90,104  75,162  80,789  95,044  107,586  105,799  97,768  87,434  85,398  91,750  107,639  86,169  60,781  46,796  46,150  46,796 
-source: own estimates based on [(DEICHNIK2020)]+source: own estimates based on underlying BSH model (Deichnik, K. (2022)) [(DEICHNIK2022)]
  
 Consumption of heavy oil has been increasing since 1984 as a result of high petroleum prices, global increases in transports and increasing maritime use of diesel engines that can run on heavy oil. The emissions fluctuations that occurred in the navigation sector in 1992 and 1996 were caused by trade and oil crises. Consumption of heavy oil has been increasing since 1984 as a result of high petroleum prices, global increases in transports and increasing maritime use of diesel engines that can run on heavy oil. The emissions fluctuations that occurred in the navigation sector in 1992 and 1996 were caused by trade and oil crises.
Line 49: Line 41:
 Furthermore, after 2014, with ever stricter legislation espacially regarding fuel sulphur content, an ongoing shift from heavy fuel oil to maritime diesel oil can be observed. Furthermore, after 2014, with ever stricter legislation espacially regarding fuel sulphur content, an ongoing shift from heavy fuel oil to maritime diesel oil can be observed.
  
-=== Emission factors === +{{ :sector:energy:fuel_combustion:transport:navigation:1a3di_ad.png?700 }}
  
-For **main pollutants** and **particulate matter**, modelled emission factors are available from (Deichnik, K. (2020)) [(DEICHNIK2020)]+==== Emission factors ====  
 + 
 +For **main pollutants** and **particulate matter**, modelled emission factors are available from (Deichnik, K. (2022)). 
  
 Here, for **sulphur dioxide** and **particulate matter**, annual values are available representing the impact of fuel sulphur legislation. Here, for **sulphur dioxide** and **particulate matter**, annual values are available representing the impact of fuel sulphur legislation.
-In addition, regarding SO,,x,,, the increasing operation of so-called scrubbers in order to fullfil emission limits especially within SECA areas is reflected for heavy fuel oil.+In addition, regarding SO<sub>2</sub>, the increasing operation of so-called scrubbers in order to fullfil emission limits especially within SECA areas is reflected for heavy fuel oil.
  
 __Table 2: Annual country-specific emission factors, in kg/TJ__ __Table 2: Annual country-specific emission factors, in kg/TJ__
-|                      **1990**   **1995**   **2000**   **2005**   **2006**  |  **2007**  |  **2008**  |  **2009**  |  **2010**   **2011**   **2012**   **2013**   **2014**  | **2015**  | **2016**  | **2017**  | **2018**  | **2019**  | +|                      1990   1995   2000   2005   2010   2011   2012   2013   2014  ^  2015  ^  2016  ^  2017  ^  2018  ^  2019  ^  2020  ^  2021  ^ 
-| **DIESEL OIL**                                                                                                                                                                             |||||||||||||||                     |                     +| **DIESEL OIL**                                                                                                                      
-^ NH<sub>3</sub>      |       0,32 |       0,32 |       0,32 |       0,32 |       0,32 |       0,32 |       0,32 |       0,32 |       0,32 |       0,32 |       0,32 |       0,32 |       0,32 |      0,33 |      0,32 |      0,32 |      0,32 |      0,32 | +^ NH<sub>3</sub>      |   0.32 |   0.32 |   0.32 |   0.32 |   0.32 |   0.32 |   0.32 |   0.32 |   0.32 |   0.32 |   0.32 |   0.32 |   0.32 |   0.32 |   0.32 |   0.32 | 
-^ NMVOC                     48,7       48,7       48,7       48,7       48,7       48,7       48,7       48,7 |       48,7       48,7 |       48,7 |       48,4 |       48,0      44,8 |      44,7      45,0 |      45,2 |      45,2 +^ NMVOC                 48.5   48.4   48.4   48.4   48.4   48.4   48.4   47.7 |   44.9   44.4 |   43.9   44.2 |   43.8 |   44.0   44.0 |   44,
-^ NO<sub>x</sub>      |      1.070      1.070      1.070      1.070      1.070      1.070      1.070      1.069      1.069      1.069      1.069      1.073      1.077     1.151     1.132     1.157 |     1.128 |     1.128 +^ NO<sub>x</sub>      |  1,101  1,101  1,101  1,101  1,101  1,101  1,119  1,126  1,155  1,184  1,183  1,189  1,200  1,199  1,169  1,199 
-^ SO<sub>x</sub>      |      465,     419,0      232,     186,2      186,2 |      186,2 |      139,7 |       69,8 |       69,8 |       65,2 |       54,5       52,6       50,5      40,     40,     40,     40,     40,+^ SO<sub>x</sub>      |    466    419 |    233    186 |   69.8 |   65.2 |   54.8   52.9 |   51.1 |  37.2                                                  ||||||| 
-^ BC<sup>1</sup>      |      109,      98,6       54,7       43,8       43,8 |       43,8 |       32,8 |       16,4       16,4       15,4 |       15,3 |       15,2       15,2      16,     16,     16,     16,5 |      16,5 | +^ BC<sup>1</sup>      |    110   99.1   55.0   44.0   16.5   15.5   15.4 |   15.3 |   15.3   17.4   17.7   17.7   17.3   17.5 |   16.8 |   17.5 | 
-^ PM<sub>2.5</sub>    |      352,     318,     176,     141,     141,3 |      141,3 |      105,9 |       53,0       53,0 |       49,6       49,5       49,1 |       49,1 |      52,     54,5 |      54,|      53,1 |      53,1 +^ PM<sub>2.5</sub>    |    354    320    177    142   53.3 |   49.9 |   49.8   49.3   49.4   56.2 |   57.1 |   57.1 |   55.9   56.5 |   54.2 |   56.5 | 
-^ PM<sub>10</sub>          377,     340,     188,     151,     151,     151,     113,3 |       56,7 |       56,7       53,0       53,0       52,5       52,6      56,4 |      58,3      58,3 |      56,9 |      56,9 +^ PM<sub>10</sub>        378    342    190    152   57.1   53.4   53.3 |   52.7 |   52.9   60.1   61.1   61.1   59.8   60.4 |   58.0   60.4 
-^ TSP<sup>2</sup>          377,     340,     188,     151,     151,     151,     113,3 |       56,7 |       56,7       53,0       53,0       52,5       52,6      56,4 |      58,3      58,3 |      56,9 |      56,9 +^ TSP<sup>2</sup>        378    342    190    152   57.1   53.4   53.3 |   52.7 |   52.9   60.1   61.1   61.1   59.8   60.4 |   58.0   60.4 
-^ CO                  |        127 |        128 |        128 |        128 |        128 |        128 |        128        128 |        128 |        128        128        127        128       134 |       139 |       138 |       136 |       136 +^ CO                  |    128 |    128 |    128 |    128 |    128 |    129    128 |    128 |    130    140    142    141    139 |    140 |    138 |    140 
-| **HEAVY FUEL OIL**                                                                                                                                                                         |||||||||||||||                     |                     +| **HEAVY FUEL OIL**                                                                                                                  
-^ NH<sub>3</sub>      |       0,34       0,34       0,34       0,34       0,34       0,34       0,34       0,34       0,34 |       0,34 |       0,34 |       0,34 |       0,35      0,33      0,33      0,34 |      0,35 |      0,35 +^ NH<sub>3</sub>      |   0.33   0.33   0.33   0.33   0.33   0.33   0.33   0.33   0.34 |   0.34 |   0.34 |   0.34 |   0.34   0.34   0.34   0.34 | 
-^ NMVOC                     36,6       36,6       36,6       36,6       36,6       36,6       36,6       36,6 |       36,6       36,6       36,6       37,6       37,8      30,     36,8 |      30,4 |      28,3 |      28,3 +^ NMVOC                 43.0   42.8   42.9   42.9   42.8   42.7   42.8   41.6 |   42.3   26.1   30.2   33.7   32.5   32.7   37.4 |   32,
-^ NO<sub>x</sub>      |      1.379      1.378      1.378      1.378      1.378      1.378      1.378      1.378      1.378      1.377      1.379      1.382      1.393     1.348     1.245     1.360 |     1.503 |     1.503 +^ NO<sub>x</sub>      |  1,368  1,368  1,368  1,368  1,368  1,367  1,367  1,384  1,433  1,487  1,440  1,479  1,480  1,507  1,509  1,507 
-^ SO<sub>x</sub>      |      1.319 |      1.332 |      1.323 |      1.336 |        744 |        742 |        742 |        744 |        496 |        496 |        496 |        496        506 |      47,     49,3      46,4      49,     49,+^ SO<sub>x</sub>      |  1,319 |  1,332 |  1,323 |  1,336 |    496 |    496 |    496 |    495    506 |   48.6   49.2   48.1 |   45.9 |   46.5   48.1   46.5 
-^ BC<sup>1</sup>      |       57,4       58,0 |       57,6 |       58,2 |       32,4       32,3       32,3       32,4       21,6       21,6 |       21,6 |       22,1       22,4      18,1 |      24,     18,3      14,     14,+^ BC<sup>1</sup>      |   70.8   71.2 |   70.8   71.6   26.5   26.5   26.5   25.6 |   25.6 |   14.2   18.0   20.1 |   19.1   18.9   21.4   18,
-^ PM<sub>2.5</sub>    |        479        483        480        485        270        269        269        270        180        180        180        184        187       151       205       153 |       123 |       123 +^ PM<sub>2.5</sub>    |    590    594    590    596    221    221    221    213    213    118    150    168    159    158    179    158 
-^ PM<sub>10</sub>            526        532        528        533        297        296        296        297        198        198        198        203        206       166       226       168 |       135 |       135 +^ PM<sub>10</sub>        649    653    649    656    243    243    243    234    235    130    165    184    175    173    197    173 
-^ TSP<sup>2</sup>            526        532        528        533        297        296        296        297        198        198        198        203        206       166       226       168 |       135 |       135 +^ TSP<sup>2</sup>        649    653    649    656    243    243    243    234    235    130    165    184    175    173    197    173 
-^ CO                  |        162        162        162        162        162        162        162        162        162        162        162 |        162        167       165       198       167 |       134 |       134 +^ CO                  |    179    179    179    179    179    179    179    175    173    144    162 |    157    156    150    151    150 
-<sup>1</sup> estimated from f-BCs as provided in [(EMEPEEA2019)]: f-BC (HFO) = 0.12, f-BC (MDO/MGO) = 0.31 as provided in [((bibcite 2))], chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii Navigation, Tables 3-1 & 3-2 \\+<sup>1</sup> estimated from f-BCs as provided in [(EMEPEEA2019)]: f-BC (HFO) = 0.12, f-BC (MDO/MGO) = 0.31 as provided in [(EMEPEEA2019)], chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii Navigation, Tables 3-1 & 3-2 \\
 <sup>2</sup> ratios PM<sub>2.5</sub> : PM<sub>10</sub> : TSP derived from the tier1 default EF as provided in [(EMEPEEA2019)], chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii Navigation, Tables 3-1 & 3-2 <sup>2</sup> ratios PM<sub>2.5</sub> : PM<sub>10</sub> : TSP derived from the tier1 default EF as provided in [(EMEPEEA2019)], chapter: 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii Navigation, Tables 3-1 & 3-2
  
-**NOTE:** For the country-specific emission factors applied for particulate matter, no clear indication is available, whether or not condensables are included. +<WRAP center round info 100%> 
 +For the country-specific emission factors applied for particulate matter, no clear indication is available, whether or not condensables are included. 
 +</WRAP>  
 + 
 +<WRAP center round info 100%> 
 +For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and  Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources. 
 +</WRAP>
  
-> For information on the **emission factors for heavy-metal and POP exhaust emissions**, please refer to Appendix 2.3 - Heavy Metal (HM) exhaust emissions from mobile sources and  Appendix 2.4 - Persistent Organic Pollutant (POP) exhaust emissions from mobile sources. 
  
 ===== Discussion of emission trends===== ===== Discussion of emission trends=====
Line 89: Line 88:
 **NFR 1.A.3.d i** is **not considered in the key category analysis**. **NFR 1.A.3.d i** is **not considered in the key category analysis**.
  
-Emission trends for unregulated pollutants (such as **NH<sub>3</sub>****NO<sub>x</sub>**, **NMVOC** and **CO**, all **HM** and **POPs**) with only slight changes in the annual over-all IEFs appliedfollow the trends in fuel consumption and the shares of diesel and heavy fuel oil:+Basically, with no significant technical improvements with respect to mitigation technologies, trends in emissions depend more or less directly the amounts of fuels bunkered in German harbours and the contributions of diesel oil/light heating oil and heavy fuel oil to the over-all fuel input.
  
-On the other hand, the emission trends for **SO<sub>x</sub>** and **PM**, both depending on the fuel's sulphur content, follow not only the trends in fuel consumption but do also reflect fuel-sulphur legislation:+Hereas the amounts of fuels allocated to international maritime navigation represent the remains of annual over-all inland fuel deliveries minus fuel consumption in domestic shipping, activity data and, hence, emissions, fluctuate strongly from year to year (see also information on activity data as stated above).
  
-===== Recalculations =====+Therefore, especially emission trends for unregulated pollutants (such as **NH<sub>3</sub>**, **NO<sub>x</sub>**, **NMVOC** and **CO**, all **HM** and **POPs**) with only slight changes in the annual over-all IEFs applied, follow the trends in fuel consumption and the shares of diesel and heavy fuel oil:
  
-Resulting from changes in the fuel consumption data computed within [(DEICHNIK2020)] for //domestic// maritime navigation, the **activity data** for 2017  for //international// maritime navigation have been reviesed.+{{ :sector:energy:fuel_combustion:transport:navigation:em_1a3di_nox.png?700 }}
  
-__Table 3: Revised fuel consumption data 2017in terajoules__ +In contrastemission trends for **SO<sub>x</sub>** and **PM**, both depending on the fuel's sulphur contentfollow not only the trends in fuel consumption but do also reflect fuel-sulphur legislation: 
-||= ||= **Diesel oil** ||= **Heavy fuel oil** ||= **over-all consumption** ||= + 
-||~ Submission 2020 ||> 22,924 ||> 58,781 ||> 81,828 ||> +{{ :sector:energy:fuel_combustion:transport:navigation:1a3di_em_so2.png?700 Annual sulphur oxides emissions }} 
-||~ Submission 2019 ||> 23,165 ||> 58,781 ||> 82,069 ||> +{{ :sector:energy:fuel_combustion:transport:navigation:em_1a3di_pm.png?700 Annual particulate matter emissions }} 
-||~ absolute change ||> -241  ||> 0.00  ||> -241  ||> + 
-||~ relative change ||> -1.04% ||> 0.00% ||> -0.29% ||>+ 
 +===== Recalculations =====
  
  
-In contrast, all country-specific and default **emission factors applied remain unrevised** compared to last year's submission. 
  
-<WRAP center round info 60%> +<WRAP center round info 65%> 
-For more information on recalculated emission estimates for Base Year and 2018please see the pollutant-specific recalculation tables following chapter [[general:recalculations:start | 8.1 - Recalculations]].+With both **activity data and emission factors unaltered****no recalculations** occur compared to submission 2022.
 </WRAP> </WRAP>
  
 ===== Uncertainties ===== ===== Uncertainties =====
  
-Uncertainty estimates for **activity data** of mobile sources derive from research project FKZ 360 16 023: "Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland" by Knörr et al. (2009) [((bibcite 5))].+Uncertainty estimates for **activity data** of mobile sources derive from research project FKZ 360 16 023: "Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland" by Knörr et al. (2009) [(KNOERR2009)].
  
 ===== Planned improvements =====  ===== Planned improvements ===== 
Line 121: Line 120:
 ===== FAQs ===== ===== FAQs =====
  
-[(AGEB2020> AGEB, 2020: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: http://www.ag-energiebilanzen.de/7-0-Bilanzen-1990-2018.html, Köln & Berlin, 2020.)] +[(AGEB2022> AGEB, 2022: Working Group on Energy Balances (Arbeitsgemeinschaft Energiebilanzen (Hrsg.), AGEB): Energiebilanz für die Bundesrepublik Deutschland; URL: http://www.ag-energiebilanzen.de/7-0-Bilanzen-1990-2019.html, Köln & Berlin, 2022.)] 
-[(DEICHNIK2020> Deichnik, K. (2019): Aktualisierung und Revision des Modells zur Berechnung der spezifischen Verbräuche und Emissionen des von Deutschland ausgehenden Seeverkehrs. from Bundesamts für Seeschifffahrt und Hydrographie (BSH); Hamburg, 2020.)]+[(DEICHNIK2022> Deichnik, K. (2022): Aktualisierung und Revision des Modells zur Berechnung der spezifischen Verbräuche und Emissionen des von Deutschland ausgehenden Seeverkehrs. from Bundesamts für Seeschifffahrt und Hydrographie (BSH); Hamburg, 2022.)]
 [(EMEPEEA2019> EMEP/EEA (2019): EMEP/EEA air pollutant emission inventory guidebook 2019, URL: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019; Copenhagen, 2019.)] [(EMEPEEA2019> EMEP/EEA (2019): EMEP/EEA air pollutant emission inventory guidebook 2019, URL: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019; Copenhagen, 2019.)]
-[(RENTZ2008> Rentz et al., 2008: Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs), im Auftrag des Umweltbundesamtes, FKZ 205 67 444, UBA Texte | 01/2008, January 2008; URL: http://www.umweltbundesamt.de/en/publikationen/nationaler-durchfuehrungsplan-unter-stockholmer )] 
 [(KNOERR2009> Knörr et al. (2009): Knörr, W., Heldstab, J., & Kasser, F.: Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland; final report; URL: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3937.pdf, FKZ 360 16 023, Heidelberg & Zürich, 2009.)] [(KNOERR2009> Knörr et al. (2009): Knörr, W., Heldstab, J., & Kasser, F.: Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland; final report; URL: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3937.pdf, FKZ 360 16 023, Heidelberg & Zürich, 2009.)]