meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:agriculture:agricultural_soils:use_of_pesticides [2024/10/10 11:48] – [Table] doeringsector:agriculture:agricultural_soils:use_of_pesticides [2025/02/20 09:36] (current) – [Trend discussion for Key Sources] niebuhr
Line 59: Line 59:
 In the past, some applicants listed maximum HCB concentrations in technical active substances in certain lindane-containing substances. The concentrations given amounted to ≤ 0.1 g/kg, a level oriented to the detection limits of the analysis method used at the time. Substances conforming to that maximum concentration were approved only through 1989 or 1990 (in one case, through 1995).  In the past, some applicants listed maximum HCB concentrations in technical active substances in certain lindane-containing substances. The concentrations given amounted to ≤ 0.1 g/kg, a level oriented to the detection limits of the analysis method used at the time. Substances conforming to that maximum concentration were approved only through 1989 or 1990 (in one case, through 1995). 
  
-Obligations to report substance quantities sold did not take effect until 1998. For the other relevant active substances, the BVL has no information on HCB as an impurity. However, publications in recent years have included data from 1977 onward (BVL 2022) ((BVL 2022, “ Absatz an Pflanzenschutzmitteln in der Bundesrepublik Deutschland Ergebnisse der Meldungen gemäß § 64 Pflanzenschutzgesetz für das Jahr 2017, korrig. Version von Nov 2018, Tab 3.2, https://www.bvl.bund.de/SharedDocs/Downloads/04_Pflanzenschutzmittel/01_meldungen_par_64/meld_par_64_2017.pdf;jsessionid=575C3CE6FEC9CF7B81387944C90C6972.1_cid372?__blob=publicationFile&v=2)). Therefore, data on the active ingredients atrazine, simazine, propazine, and quintozine are also available and will be included in the 2023 submission.+Obligations to report substance quantities sold did not take effect until 1998. For the other relevant active substances, the BVL has no information on HCB as an impurity. However, publications in recent years have included data from 1977 onward (BVL 2022) ((BVL 2022, “ Absatz an Pflanzenschutzmitteln in der Bundesrepublik Deutschland Ergebnisse der Meldungen gemäß § 64 Pflanzenschutzgesetz für das Jahr 2017, korrig. Version von Nov 2018, Tab 3.2, https://www.bvl.bund.de/SharedDocs/Downloads/04_Pflanzenschutzmittel/01_meldungen_par_64/meld_par_64_2017.pdf;jsessionid=575C3CE6FEC9CF7B81387944C90C6972.1_cid372?__blob=publicationFile&v=2)). Therefore, data on the active ingredients atrazine, simazine, propazine, and quintozine are also available and were included in the 2023 reporting
  
 ==== Methodology ==== ==== Methodology ====
Line 85: Line 85:
  
  
-As activity data, domestic sales of pesticides with the active substances chlorothalonil, picloram, lindane as well as atrazine, simazine, propazine and quintozine compiled by the BVL were used (reports pursuant to § 64 of the Plant Protection Act (PflSchG, 2012) ((PflSchG (2012): Gesetz zur Neuordnung des Pflanzenschutzgesetzes, Bundesgesetzblatt (BGBl), Jahrgang 2012, Teil I, Nr. 7, § 64.)); (cf. Table II, domestic sales). Since 2018, domestic sales of all active substances have been published ((see Excel Table “Absatzmengen an Wirkstoffen in Pflanzenschutzmitteln von 1987 bis 2021”. https://www.bvl.bund.de/DE/Arbeitsbereiche/04_Pflanzenschutzmittel/01_Aufgaben/02_ZulassungPSM/03_PSMInlandsabsatzAusfuhr/psm_PSMInlandsabsatzAusfuhr_node.html)).+As activity data, domestic sales of pesticides with the active substances chlorothalonil, picloram, lindane as well as atrazine, simazine, propazine and quintozine compiled by the BVL were used (reports pursuant to § 64 of the Plant Protection Act (PflSchG, 2012) ((PflSchG (2012): Gesetz zur Neuordnung des Pflanzenschutzgesetzes, Bundesgesetzblatt (BGBl), Jahrgang 2012, Teil I, Nr. 7, § 64.)); (cf. Table II, domestic sales). Since 2018, domestic sales of all active substances have been published ((see Excel Table “Absatzmengen an Wirkstoffen in Pflanzenschutzmitteln von 1987 bis 2023”. https://www.bvl.bund.de/DE/Arbeitsbereiche/04_Pflanzenschutzmittel/01_Aufgaben/02_ZulassungPSM/03_PSMInlandsabsatzAusfuhr/psm_PSMInlandsabsatzAusfuhr_node.html)) or [[ https://gis.bvl.bund.de/]].
  
 __Table 3: Domestic sales of active substances, as of 1987, in t/a__ __Table 3: Domestic sales of active substances, as of 1987, in t/a__
Line 133: Line 133:
    
  
-For picloram, a maximum concentration of 50 mg/kg has been specified for some pesticides. Relevant pesticides were introduced in Germany beginning in 2006. Picloram was added to Annex I with the Commission Directive 2008/69/EC ((Directive 2008/69/EC: Commission Directive 2008/69/EC of 1 July 2008 amending Council Directive 91/414/EEC to include clofentezine, dicamba, difenoconazole, diflubenzuron, imazaquin, lenacil, oxadiazon, picloram and pyriproxyfen as active substances 2008/69/EC C.F.R. (2008).)) and the HCB impurity is still set to 50 mg/kg (FAO, 2012 ((FAO (2012): FAO (Food and Agriculture Organization of the United Nations)Specifications and Evaluations for Picloram, Table 2, p. 23. http://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/jmps/ps-new/en/))). For 2020, the same amount as for previous years is assumed. +For picloram, a maximum concentration of 50 mg/kg has been specified for some pesticides. Relevant pesticides were introduced in Germany beginning in 2006. Picloram was added to Annex I with the Commission Directive 2008/69/EC ((Directive 2008/69/EC: Commission Directive 2008/69/EC of 1 July 2008 amending Council Directive 91/414/EEC to include clofentezine, dicamba, difenoconazole, diflubenzuron, imazaquin, lenacil, oxadiazon, picloram and pyriproxyfen as active substances 2008/69/EC C.F.R. (2008).)) and the HCB impurity is still set to 50 mg/kg (FAO, 2012 ((FAO (2012): FAO (Food and Agriculture Organization of the United Nations) Specifications and Evaluations for Picloram, Table 2, p. 23. http://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/jmps/ps-new/en/))). For 2023, the same amount as for previous years is assumed. 
  
 === Lindane === === Lindane ===
Line 154: Line 154:
 |  2000          170            |  50        n/a      n/a      |  n/a      |  n/a        n/a        | |  2000          170            |  50        n/a      n/a      |  n/a      |  n/a        n/a        |
 |  2001 - 2017  |  40              50        n/a      n/a      |  n/a      |  n/a        n/a        | |  2001 - 2017  |  40              50        n/a      n/a      |  n/a      |  n/a        n/a        |
-|  2018 - 2022   10              50        n/a      n/a      |  n/a      |  n/a        n/a        |+|  2018 - 2023   10              50        n/a      n/a      |  n/a      |  n/a        n/a        |
  
  
Line 161: Line 161:
 While this results from the large quantities of chlorothalonil-containing pesticides sold, it is also due to the high chlorothalonil concentrations in such pesticides and to the high permitted maximum HCB concentrations (0.3 g/kg), in chlorothalonil as a technical active substance, that applied prior to 2000. Due to the revised data, changes in HCB quantities occur. While this results from the large quantities of chlorothalonil-containing pesticides sold, it is also due to the high chlorothalonil concentrations in such pesticides and to the high permitted maximum HCB concentrations (0.3 g/kg), in chlorothalonil as a technical active substance, that applied prior to 2000. Due to the revised data, changes in HCB quantities occur.
  
-The maximum HCB quantity for picloram, in the period under consideration, were lower, respectively, than the relevant quantities for chlorothalonil. For this reason, fluctuations in sales of picloram have very little impact on maximum HCB quantities.The maximum HCB quantities used in the 2022 submission correspond to the emissions and are presented under the chapter 'Recalculations'.+The maximum HCB quantity for picloram, in the period under consideration, were lower, respectively, than the relevant quantities for chlorothalonil. For this reason, fluctuations in sales of picloram have very little impact on maximum HCB quantities.
  
  
Line 176: Line 176:
  
  
-The following chart give an overview of the emission trend of HCB (see Picture 1). HCB emissions were fully recalculated from 1987 onwards including atrazine, simazine, propazine and quintozine. HCB emissions are reported in the NFR tables beginning in 1990. +The following chart gives an overview of the emission trend of HCB (see Picture 1). HCB emissions were fully recalculated from 1987 onwards including atrazine, simazine, propazine and quintozine. HCB emissions are reported in the NFR tables beginning in 1990. 
  
 HCB emissions are mainly dominated by the share of chlorothalonil. According to the BVL (2021a) ((BVL (2021a) (Bundesamts für Verbraucherschutz und Lebensmittelsicherheit Braunschweig): persönliche Mitteilung der Wirkstoffdaten, 2021)), a possible explanation for the increase in HCB emissions from 2005 onwards would be the re-approval of "Bravo 500" in December 2004 against Septoria in wheat and then for the first time against phytophthora in potatoes. HCB emissions are mainly dominated by the share of chlorothalonil. According to the BVL (2021a) ((BVL (2021a) (Bundesamts für Verbraucherschutz und Lebensmittelsicherheit Braunschweig): persönliche Mitteilung der Wirkstoffdaten, 2021)), a possible explanation for the increase in HCB emissions from 2005 onwards would be the re-approval of "Bravo 500" in December 2004 against Septoria in wheat and then for the first time against phytophthora in potatoes.
 It is possible that the first "sell-out" took place in 2014, as the end of approval for "Bravo 500" was originally 30.04.2016 with a sales deadline of 30.10.2016 and a phase-out period for users until 30.10.2017. It is possible that the first "sell-out" took place in 2014, as the end of approval for "Bravo 500" was originally 30.04.2016 with a sales deadline of 30.10.2016 and a phase-out period for users until 30.10.2017.
-The end of the EU active substance authorisation for chlorothalonil was later extended to 31.10.2018 and again to 31.10.2019, and with it the authorisations for the plant protection products in Germany. With the Implementing Regulation (EU) 2019/677 23), the BVL revoked the last three approvals for plant protection products containing chlorothalonil on 31 October 2019((cf. BVL; 2019: BVL - Fachmeldungen - Widerruf der Zulassung von Pflanzenschutzmitteln mit dem Wirkstoff Chlorthalonil zum 31. Oktober 2019. (2019, 31. Oktober). Abgerufen am September 2021, von https://www.bvl.bund.de/SharedDocs/Fachmeldungen/04_pflanzenschutzmittel/2019/2019_06_19_Fa_Widerruf_Chlorthalonil.html)). A sell-off period until 30 April 2020 applied. Often, in the last years before the end of the approval, the remaining stocks are brought onto the market, which leads to higher sales than in previous years.No active ingredient of chlorothalonil was sold in 2021. This means that chlorothalonil is off the market for the time being. Picloram has an approval end date of Dec. 2023. Picloram is thus also subject to a disposal obligation under Section 15 of the PflSchG because the plant protection products contain an active substance that is no longer approved in the EU+The end of the EU active substance authorisation for chlorothalonil was later extended to 31.10.2018 and again to 31.10.2019, and with it the authorisations for the plant protection products in Germany. With the Implementing Regulation (EU) 2019/677 23), the BVL revoked the last three approvals for plant protection products containing chlorothalonil on 31 October 2019((cf. BVL; 2019: BVL - Fachmeldungen - Widerruf der Zulassung von Pflanzenschutzmitteln mit dem Wirkstoff Chlorthalonil zum 31. Oktober 2019. (2019, 31. Oktober). Abgerufen am September 2021, von https://www.bvl.bund.de/SharedDocs/Fachmeldungen/04_pflanzenschutzmittel/2019/2019_06_19_Fa_Widerruf_Chlorthalonil.html)). A sell-off period until 30 April 2020 applied. Often, in the last years before the end of the approval, the remaining stocks are brought onto the market, which leads to higher sales than in previous years. No active ingredient of chlorothalonil was sold in 2021. This means that chlorothalonil is off the market for the time being. According to the German Federal Office of Consumer Protection and Food Safety (BVL)((BVL (2024): Personal communication (20241009) on the extension of the approval of Picloram 
 +)), the EU authorization (http://data.europa.eu/eli/reg_impl/2023/2592/oj) for picloram has been extended beyond the end of 2023. Subsequent applications from the European Food Safety Authority (EFSA) must be submitted by December 1, 2025.
  
  
 //Picture 1: Annual trend of HCB emissions in Germany in the sector agriculture, in kg// //Picture 1: Annual trend of HCB emissions in Germany in the sector agriculture, in kg//
-{{ :sector:agriculture:agricultural_soils:hcb_emissions_1987_2022_version.png?direct&600 |}}+ 
 +{{:sector:agriculture:agricultural_soils:hcb_emissions.jpg}}
  
  
Line 199: Line 201:
 For the calculation of emissions consumption figures (i. e. statistical figures) are used. Therefore, a standard error of HCB content is assumed as 2.5 % for the emission inventory. The 95% confidence interval is therefore 5 %. A normal distribution is assumed. For the calculation of emissions consumption figures (i. e. statistical figures) are used. Therefore, a standard error of HCB content is assumed as 2.5 % for the emission inventory. The 95% confidence interval is therefore 5 %. A normal distribution is assumed.
  
-The uncertainty for the emission factor was determined using the PELMO model. For this purpose, the applied amounts of HCB on the plant surface were calculated with a vapour pressure reduced by a factor of 10. In addition, the meteorological conditions for modelling were selected in such a way that a range of possible emission factors for different locations was distributed across Europe (from Porto, Portugal, to Jokioinen in Finland). This results in a minimum and maximum emission factor. The maximum range was 30 %; the arithmetic mean was 10 % uncertainty (personal communication, Klein, 2017). A conservative approach and thus 30 % uncertainty is chosen for the calculation of uncertainties. This results in a total uncertainty for HCB emissions of 30.4 %+The uncertainty for the emission factor was determined using the PELMO model. For this purpose, the applied amounts of HCB on the plant surface were calculated with a vapour pressure reduced by a factor of 10. In addition, the meteorological conditions for modelling were selected in such a way that a range of possible emission factors for different locations was distributed across Europe (from Porto, Portugal, to Jokioinen in Finland). This results in a minimum and maximum emission factor. The maximum range was 30 %; the arithmetic mean was 10 % uncertainty (personal communication, Klein, 2017). A conservative approach and thus 30 % uncertainty is chosen for the calculation of uncertainties. The BVL also prepares a quality report on the quantities sales volumes of plant protection products((BVL (2024b):https://www.bvl.bund.de/SharedDocs/Downloads/04_Pflanzenschutzmittel/01_meldungen_par_64/01_Qualit%C3%A4tsbericht_AbsatzmengenPSM/Qualitaetsbericht_AbsatzmengenPSM_pdf.pdf?__blob=publicationFile&v=4)). This report was prepared in accordance with the guidelines for quality reports of the Federal Statistical OfficeIt describes the procedure for compiling the annual statistics on plant protection products exported plant protection products and the active substances they contain.  
 +active substances contained therein.
 ===== Planned improvements ===== ===== Planned improvements =====