meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sector:energy:fuel_combustion:industry:other:start [2021/01/21 13:45] – [Table] gniffkesector:energy:fuel_combustion:industry:other:start [2021/12/15 20:00] (current) – external edit 127.0.0.1
Line 5: Line 5:
 Source category //1.A.2.g viii - Stationary Combustion in Manufacturing Industries and Construction: Other// comprises stationary combustion systems for heat and power production of industrial power plants and industrial boiler systems. Source category //1.A.2.g viii - Stationary Combustion in Manufacturing Industries and Construction: Other// comprises stationary combustion systems for heat and power production of industrial power plants and industrial boiler systems.
  
-^  Method   AD  ^  EF  ^  Key Category                                                                                 + 
-|  T2      |  NS  |  CS  |  **L&T:** SO<sub>x</sub>, TSP, Hg, PCDD/**L:** PM<sub>2.5</sub>,NO<sub>x</sub> **T:** Cd  |+ 
 +Category Code   Method                                ||||^  AD                                ||||^  EF                                  ||||| 
 +| 1.A.2.g viii        |  T2                                    |||||  NS                                |||||  CS                                  ||||| 
 +^  Key Category   SO₂      NOₓ  ^  NH₃  ^  NMVOC  ^  CO    BC    Pb    Hg    Cd    Diox  ^  PAH  ^  HCB  ^  TSP  ^  PM₁₀  ^  PM₂ ₅  
 +| 1.A.2.g viii    |  L/T        |  L/T  |  -/-  |  -/-    |  -/-  |  -/-  |  -/-  |  L/T  |  L/T  |  L/T   |  -/-  |  -/-  |  L/T  |  -/-    L/-    |
  
 {{page>general:Misc:LegendEIT:start}} {{page>general:Misc:LegendEIT:start}}
Line 36: Line 40:
 ^                      SO<sub>x</sub>  ^  NO<sub>x</sub>  ^  TSP  ^  CO    Pb      Hg    Cd   ^ ^                      SO<sub>x</sub>  ^  NO<sub>x</sub>  ^  TSP  ^  CO    Pb      Hg    Cd   ^
 ^                                                              [kg/TJ] |||^ [g/TJ]                ||| ^                                                              [kg/TJ] |||^ [g/TJ]                |||
-^ Hard Coal                      141.             101 |   3.|  26.|    3.97 |  2.33 |  0.37 +^ Hard Coal                      142.           101.3 |   3.|  26.|    4.94 |  2.35 |  0.36 
-^ Lignite                        230.           100.|   7.|  47.|    1.06 |  2.42 |  0.14 +^ Lignite                        221.            98.|   7.|  47.|    1.15 |  2.42 |  0.15 
-^ Natural gas                      0.1 |             41.|   0.2 |  10.0 |  NA      0.01 |  NA   | +^ Natural gas                      0.1 |             41.|   0.2 |  11.0 |  NA      0.01 |  NA   | 
-^ Petroleum products  |             55.|             48.|   1.8 |   3.3 |     0.|  0.24 |  0.05 +^ Petroleum products  |             55.|             49.|   1.8 |   3.3 |    0.79 |  0.18 |  0.03 
-^ Biomass                          9.|            136.9 |  18.5 |  55.|    0.49 |  0.12 |  0.62 +^ Biomass                         10.|            136.9 |  18.5 |  56.|    0.44 |  0.11 |  0.55 
-^ Hazardous Waste                  0.5 |             69.2 |   0.3 |   8.3 |    4.90 |  0.34 |   1.|+^ Hazardous Waste                  0.5 |             69.2 |   0.3 |   8.3 |    4.90 |  0.34 |  1.10 |
  
 The table gives an overview of the implied emission factors. In reality the German inventory compiling process is very complex and includes the use of a considerable number of emission factors, which cannot be published completely in the IIR.  The table gives an overview of the implied emission factors. In reality the German inventory compiling process is very complex and includes the use of a considerable number of emission factors, which cannot be published completely in the IIR. 
  
 Actually there are different emission factors available for diverse fuel types, various techniques and licensing requirements. However, the implied emission factor may give an impression about the order of magnitude. Actually there are different emission factors available for diverse fuel types, various techniques and licensing requirements. However, the implied emission factor may give an impression about the order of magnitude.
-PM10 and PM2.5 emission factors are calculated as a fraction of TSP. The share of PM10 is 90 % and the share of PM2.5 is 80 % for solid fuels. This is a simple but also conservative approach, knowing that, in reality, PM emissions depend on fuel, combustion and abatement technologies. In terms of natural gas and biogas PM10 and PM2.5 fractions are considered as 100 % of TSP. Regarding wood a share of 100% PM10 and 90% PM2.5 is used. For liquid fuels the default share of 100% PM10 and PM2.5 is used. In the cases of co-incineration, where liquid fuels are only used for ignition in coal fired plants, the share of coal fired plants is used. PM emission reporting starts in 1995, since no sufficient information about the dust composition of the early 1990s is available.+PM<sub>10</sub> and PM<sub>2.5</sub> emission factors are calculated as a fraction of TSP. The share of PM<sub>10</sub> is 90 % and the share of PM<sub>2.5</sub> is 80 % for solid fuels. This is a simple but also conservative approach, knowing that, in reality, PM emissions depend on fuel, combustion and abatement technologies. In terms of natural gas and biogas PM<sub>10</sub> and PM<sub>2.5</sub> fractions are considered as 100 % of TSP. Regarding wood a share of 100% PM<sub>10</sub> and 90% PM<sub>2.5</sub> is used. For liquid fuels the default share of 100% PM<sub>10</sub> and PM<sub>2.5</sub> is used. In the cases of co-incineration, where liquid fuels are only used for ignition in coal fired plants, the share of coal fired plants is used. PM emission reporting starts in 1995, since no sufficient information about the dust composition of the early 1990s is available.
  
 ===== Trend Discussion for Key Sources ===== ===== Trend Discussion for Key Sources =====
Line 56: Line 60:
 {{:sector:energy:fuel_combustion:industry:1a2gviii_em_nox.png?400| Annual emissions of NOx from stationary plants in 1.A.2.g.vii}} {{:sector:energy:fuel_combustion:industry:1a2gviii_em_nox.png?400| Annual emissions of NOx from stationary plants in 1.A.2.g.vii}}
  
-Like already discussed in source category 1.A.1.c, SO,,x,, emission trend is very much influenced by emissions from lignite fired plants. The strong decline of lignite use in the East German industry and the installation of flue gas desulfurisation plants in the remaining heat and power stations are the main reasons for decreasing SO,,x,, emissions.+Like already discussed in source category 1.A.1.c, SO<sub>x</sub> emission trend is very much influenced by emissions from lignite fired plants. The strong decline of lignite use in the East German industry and the installation of flue gas desulfurisation plants in the remaining heat and power stations are the main reasons for decreasing SO<sub>x</sub> emissions.
  
 ==== Total Suspended Matter - TSP & Priority Heavy Metal - Hg & Cd ==== ==== Total Suspended Matter - TSP & Priority Heavy Metal - Hg & Cd ====
Line 73: Line 77:
 ===== Recalculations ===== ===== Recalculations =====
  
-Recalculations were necessary for the latest reference year (2017) due to the availability of the National Energy Balance. Germany has a federal structure which causes a time lag for the National Energy Balance. Therefore recalculations are always necessary.  +Recalculations were necessary for the latest reference year (2018) due to the availability of the National Energy Balance. Germany has a federal structure which causes a time lag for the National Energy Balance. Therefore recalculations are always necessary. 
-Further recalculations occured due to the revision of CO and NH,,3,, emission factors of large combustion plants+
  
 <WRAP center round info 60%> <WRAP center round info 60%>